Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpsnopab Structured version   Visualization version   GIF version

Theorem xpsnopab 47568
Description: A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
xpsnopab ({𝑋} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑋𝑏𝐶)}
Distinct variable groups:   𝐶,𝑎,𝑏   𝑋,𝑎,𝑏

Proof of Theorem xpsnopab
StepHypRef Expression
1 df-xp 5679 . 2 ({𝑋} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑋} ∧ 𝑏𝐶)}
2 velsn 4640 . . . 4 (𝑎 ∈ {𝑋} ↔ 𝑎 = 𝑋)
32anbi1i 622 . . 3 ((𝑎 ∈ {𝑋} ∧ 𝑏𝐶) ↔ (𝑎 = 𝑋𝑏𝐶))
43opabbii 5211 . 2 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑋} ∧ 𝑏𝐶)} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑋𝑏𝐶)}
51, 4eqtri 2754 1 ({𝑋} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑋𝑏𝐶)}
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1534  wcel 2099  {csn 4624  {copab 5206   × cxp 5671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3465  df-sn 4625  df-opab 5207  df-xp 5679
This theorem is referenced by:  xpiun  47569
  Copyright terms: Public domain W3C validator