Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xpsnopab | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
xpsnopab | ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5595 | . 2 ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶)} | |
2 | velsn 4577 | . . . 4 ⊢ (𝑎 ∈ {𝑋} ↔ 𝑎 = 𝑋) | |
3 | 2 | anbi1i 624 | . . 3 ⊢ ((𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶) ↔ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)) |
4 | 3 | opabbii 5141 | . 2 ⊢ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶)} = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
5 | 1, 4 | eqtri 2766 | 1 ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4561 {copab 5136 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-sn 4562 df-opab 5137 df-xp 5595 |
This theorem is referenced by: xpiun 45320 |
Copyright terms: Public domain | W3C validator |