Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpsnopab Structured version   Visualization version   GIF version

Theorem xpsnopab 45659
Description: A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
xpsnopab ({𝑋} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑋𝑏𝐶)}
Distinct variable groups:   𝐶,𝑎,𝑏   𝑋,𝑎,𝑏

Proof of Theorem xpsnopab
StepHypRef Expression
1 df-xp 5620 . 2 ({𝑋} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑋} ∧ 𝑏𝐶)}
2 velsn 4588 . . . 4 (𝑎 ∈ {𝑋} ↔ 𝑎 = 𝑋)
32anbi1i 624 . . 3 ((𝑎 ∈ {𝑋} ∧ 𝑏𝐶) ↔ (𝑎 = 𝑋𝑏𝐶))
43opabbii 5156 . 2 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑋} ∧ 𝑏𝐶)} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑋𝑏𝐶)}
51, 4eqtri 2764 1 ({𝑋} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑋𝑏𝐶)}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1540  wcel 2105  {csn 4572  {copab 5151   × cxp 5612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-sn 4573  df-opab 5152  df-xp 5620
This theorem is referenced by:  xpiun  45660
  Copyright terms: Public domain W3C validator