| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xpsnopab | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| xpsnopab | ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5622 | . 2 ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶)} | |
| 2 | velsn 4592 | . . . 4 ⊢ (𝑎 ∈ {𝑋} ↔ 𝑎 = 𝑋) | |
| 3 | 2 | anbi1i 624 | . . 3 ⊢ ((𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶) ↔ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)) |
| 4 | 3 | opabbii 5158 | . 2 ⊢ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶)} = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
| 5 | 1, 4 | eqtri 2754 | 1 ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4576 {copab 5153 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sn 4577 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: xpiun 48188 |
| Copyright terms: Public domain | W3C validator |