| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xpsnopab | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| xpsnopab | ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5652 | . 2 ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶)} | |
| 2 | velsn 4613 | . . . 4 ⊢ (𝑎 ∈ {𝑋} ↔ 𝑎 = 𝑋) | |
| 3 | 2 | anbi1i 624 | . . 3 ⊢ ((𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶) ↔ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)) |
| 4 | 3 | opabbii 5182 | . 2 ⊢ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶)} = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
| 5 | 1, 4 | eqtri 2753 | 1 ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4597 {copab 5177 × cxp 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-sn 4598 df-opab 5178 df-xp 5652 |
| This theorem is referenced by: xpiun 48075 |
| Copyright terms: Public domain | W3C validator |