![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xpsnopab | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
xpsnopab | ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5679 | . 2 ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶)} | |
2 | velsn 4640 | . . . 4 ⊢ (𝑎 ∈ {𝑋} ↔ 𝑎 = 𝑋) | |
3 | 2 | anbi1i 622 | . . 3 ⊢ ((𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶) ↔ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)) |
4 | 3 | opabbii 5211 | . 2 ⊢ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑋} ∧ 𝑏 ∈ 𝐶)} = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
5 | 1, 4 | eqtri 2754 | 1 ⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 ∈ wcel 2099 {csn 4624 {copab 5206 × cxp 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3465 df-sn 4625 df-opab 5207 df-xp 5679 |
This theorem is referenced by: xpiun 47569 |
Copyright terms: Public domain | W3C validator |