![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabbii | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ 𝑧 = 𝑧 | |
2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
4 | 3 | opabbidv 5232 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-opab 5229 |
This theorem is referenced by: mptv 5282 2rbropap 5585 dfid4 5594 fconstmpt 5762 xpundi 5768 xpundir 5769 inxpOLD 5857 csbcnv 5908 cnvco 5910 resopab 6063 opabresid 6079 cnvi 6173 cnvun 6174 cnvxp 6188 cnvcnv3 6219 coundi 6278 coundir 6279 mptun 6726 fvopab6 7063 fmptsng 7202 fmptsnd 7203 cbvoprab1 7537 cbvoprab12 7539 dmoprabss 7553 mpomptx 7563 resoprab 7568 elrnmpores 7588 ov6g 7614 1st2val 8058 2nd2val 8059 dfoprab3s 8094 dfoprab3 8095 dfoprab4 8096 opabn1stprc 8099 mptmpoopabbrd 8121 mptmpoopabbrdOLD 8122 mptmpoopabbrdOLDOLD 8124 fsplit 8158 mapsncnv 8951 xpcomco 9128 marypha2lem2 9505 oemapso 9751 ttrclresv 9786 leweon 10080 r0weon 10081 compsscnv 10440 fpwwe 10715 ltrelxr 11351 ltxrlt 11360 ltxr 13178 shftidt2 15130 prdsle 17522 prdsless 17523 prdsleval 17537 dfiso2 17833 joindm 18445 meetdm 18459 gaorb 19347 efgcpbllema 19796 frgpuplem 19814 dvdsrzring 21495 pjfval2 21752 ltbval 22084 ltbwe 22085 opsrle 22088 opsrtoslem1 22102 opsrtoslem2 22103 lmfval 23261 lmbr 23287 lgsquadlem3 27444 perpln1 28736 outpasch 28781 ishpg 28785 axcontlem2 28998 wksfval 29645 wlkson 29692 pthsfval 29757 ispth 29759 dfadj2 31917 dmadjss 31919 cnvadj 31924 mpomptxf 32695 lsmsnorb2 33385 satfv0 35326 satfvsuclem1 35327 satfvsuclem2 35328 satfbrsuc 35334 satf0 35340 satf0suclem 35343 fmlasuc0 35352 fneer 36319 bj-dfmpoa 37084 bj-mpomptALT 37085 bj-brab2a1 37115 bj-imdiridlem 37151 bj-opabco 37154 opropabco 37684 cnvepres 38254 inxp2 38323 disjecxrn 38345 xrninxp 38348 xrninxp2 38349 rnxrnres 38355 rnxrncnvepres 38356 rnxrnidres 38357 dfcoss2 38369 dfcoss3 38370 cosscnv 38372 coss1cnvres 38373 coss2cnvepres 38374 1cossres 38385 dfcoels 38386 ressn2 38398 br1cosscnvxrn 38430 1cosscnvxrn 38431 coss0 38435 cossid 38436 dfssr2 38455 cmtfvalN 39166 cmtvalN 39167 cvrfval 39224 cvrval 39225 dicval2 41136 aks6d1c1p1rcl 42065 aks6d1c1rh 42082 fgraphopab 43164 fgraphxp 43165 mptssid 45149 dfnelbr2 47188 opabbrfex0d 47201 opabbrfexd 47203 upwlksfval 47858 xpsnopab 47880 mpomptx2 48059 |
Copyright terms: Public domain | W3C validator |