![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabbii | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
opabbii | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 ⊢ 𝑧 = 𝑧 | |
2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
4 | 3 | opabbidv 5214 | . 2 ⊢ (𝑧 = 𝑧 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-opab 5211 |
This theorem is referenced by: mptv 5264 2rbropap 5566 dfid4 5575 fconstmpt 5738 xpundi 5744 xpundir 5745 inxp 5832 csbcnv 5883 cnvco 5885 resopab 6034 opabresid 6049 cnvi 6141 cnvun 6142 cnvxp 6156 cnvcnv3 6187 coundi 6246 coundir 6247 mptun 6696 fvopab6 7031 fmptsng 7168 fmptsnd 7169 cbvoprab1 7498 cbvoprab12 7500 dmoprabss 7513 mpomptx 7523 resoprab 7528 elrnmpores 7548 ov6g 7573 1st2val 8005 2nd2val 8006 dfoprab3s 8041 dfoprab3 8042 dfoprab4 8043 opabn1stprc 8046 mptmpoopabbrd 8069 mptmpoopabbrdOLD 8071 fsplit 8105 mapsncnv 8889 xpcomco 9064 marypha2lem2 9433 oemapso 9679 ttrclresv 9714 leweon 10008 r0weon 10009 compsscnv 10368 fpwwe 10643 ltrelxr 11279 ltxrlt 11288 ltxr 13099 shftidt2 15032 prdsle 17412 prdsless 17413 prdsleval 17427 dfiso2 17723 joindm 18332 meetdm 18346 gaorb 19212 efgcpbllema 19663 frgpuplem 19681 dvdsrzring 21232 pjfval2 21483 ltbval 21817 ltbwe 21818 opsrle 21821 opsrtoslem1 21835 opsrtoslem2 21836 lmfval 22956 lmbr 22982 lgsquadlem3 27109 perpln1 28216 outpasch 28261 ishpg 28265 axcontlem2 28478 wksfval 29121 wlkson 29168 pthsfval 29233 ispth 29235 dfadj2 31393 dmadjss 31395 cnvadj 31400 mpomptxf 32160 lsmsnorb2 32764 satfv0 34635 satfvsuclem1 34636 satfvsuclem2 34637 satfbrsuc 34643 satf0 34649 satf0suclem 34652 fmlasuc0 34661 fneer 35541 bj-dfmpoa 36302 bj-mpomptALT 36303 bj-brab2a1 36333 bj-imdiridlem 36369 bj-opabco 36372 opropabco 36895 cnvepres 37470 inxp2 37539 disjecxrn 37562 xrninxp 37565 xrninxp2 37566 rnxrnres 37572 rnxrncnvepres 37573 rnxrnidres 37574 dfcoss2 37586 dfcoss3 37587 cosscnv 37589 coss1cnvres 37590 coss2cnvepres 37591 1cossres 37602 dfcoels 37603 ressn2 37615 br1cosscnvxrn 37647 1cosscnvxrn 37648 coss0 37652 cossid 37653 dfssr2 37672 cmtfvalN 38383 cmtvalN 38384 cvrfval 38441 cvrval 38442 dicval2 40353 fgraphopab 42254 fgraphxp 42255 mptssid 44243 dfnelbr2 46280 opabbrfex0d 46293 opabbrfexd 46295 upwlksfval 46812 xpsnopab 46834 mpomptx2 47099 |
Copyright terms: Public domain | W3C validator |