| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabbii | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ 𝑧 = 𝑧 | |
| 2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
| 4 | 3 | opabbidv 5152 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 {copab 5148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-opab 5149 |
| This theorem is referenced by: mptv 5192 2rbropap 5499 dfid4 5507 fconstmpt 5673 xpundi 5680 xpundir 5681 inxpOLD 5767 csbcnv 5818 cnvco 5820 resopab 5978 opabresid 5994 cnvi 6083 cnvun 6084 cnvxp 6099 cnvcnv3 6130 coundi 6189 coundir 6190 mptun 6622 fvopab6 6958 fmptsng 7097 fmptsnd 7098 cbvoprab1 7428 cbvoprab12 7430 dmoprabss 7445 mpomptx 7454 resoprab 7459 elrnmpores 7479 ov6g 7505 1st2val 7944 2nd2val 7945 dfoprab3s 7980 dfoprab3 7981 dfoprab4 7982 opabn1stprc 7985 mptmpoopabbrd 8007 mptmpoopabbrdOLD 8008 fsplit 8042 mapsncnv 8812 xpcomco 8975 marypha2lem2 9315 oemapso 9567 ttrclresv 9602 leweon 9897 r0weon 9898 compsscnv 10257 fpwwe 10532 ltrelxr 11168 ltxrlt 11178 ltxr 13009 shftidt2 14983 prdsle 17361 prdsless 17362 prdsleval 17376 dfiso2 17674 joindm 18274 meetdm 18288 gaorb 19214 efgcpbllema 19661 frgpuplem 19679 dvdsrzring 21393 pjfval2 21641 ltbval 21973 ltbwe 21974 opsrle 21977 opsrtoslem1 21985 opsrtoslem2 21986 lmfval 23142 lmbr 23168 lgsquadlem3 27315 perpln1 28683 outpasch 28728 ishpg 28732 axcontlem2 28938 wksfval 29583 wlkson 29628 pthsfval 29692 ispth 29694 dfadj2 31857 dmadjss 31859 cnvadj 31864 mpomptxf 32651 lsmsnorb2 33349 satfv0 35394 satfvsuclem1 35395 satfvsuclem2 35396 satfbrsuc 35402 satf0 35408 satf0suclem 35411 fmlasuc0 35420 fneer 36387 bj-dfmpoa 37152 bj-mpomptALT 37153 bj-brab2a1 37183 bj-imdiridlem 37219 bj-opabco 37222 opropabco 37764 cnvepres 38332 inxp2 38395 disjecxrn 38421 xrninxp 38424 xrninxp2 38425 rnxrnres 38431 rnxrncnvepres 38432 rnxrnidres 38433 dfcoss2 38450 dfcoss3 38451 cosscnv 38453 coss1cnvres 38454 coss2cnvepres 38455 1cossres 38466 dfcoels 38467 ressn2 38479 br1cosscnvxrn 38511 1cosscnvxrn 38512 coss0 38516 cossid 38517 dfssr2 38536 cmtfvalN 39249 cmtvalN 39250 cvrfval 39307 cvrval 39308 dicval2 41218 aks6d1c1p1rcl 42141 aks6d1c1rh 42158 fgraphopab 43236 fgraphxp 43237 modelaxreplem2 45012 mptssid 45278 dfnelbr2 47304 opabbrfex0d 47317 opabbrfexd 47319 upwlksfval 48166 xpsnopab 48188 mpomptx2 48366 upfval2 49209 |
| Copyright terms: Public domain | W3C validator |