Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabbii | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝑧 = 𝑧 | |
2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
4 | 3 | opabbidv 5140 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-opab 5137 |
This theorem is referenced by: mptv 5190 2rbropap 5479 dfid4 5490 fconstmpt 5649 xpundi 5655 xpundir 5656 inxp 5741 csbcnv 5792 cnvco 5794 resopab 5942 opabresid 5957 opabresidOLD 5959 cnvi 6045 cnvun 6046 cnvxp 6060 cnvcnv3 6091 coundi 6151 coundir 6152 mptun 6579 fvopab6 6908 fmptsng 7040 fmptsnd 7041 cbvoprab1 7362 cbvoprab12 7364 dmoprabss 7377 mpomptx 7387 resoprab 7392 elrnmpores 7411 ov6g 7436 1st2val 7859 2nd2val 7860 dfoprab3s 7893 dfoprab3 7894 dfoprab4 7895 opabn1stprc 7898 mptmpoopabbrd 7921 mptmpoopabbrdOLD 7923 fsplit 7957 fsplitOLD 7958 mapsncnv 8681 xpcomco 8849 marypha2lem2 9195 oemapso 9440 ttrclresv 9475 leweon 9767 r0weon 9768 compsscnv 10127 fpwwe 10402 ltrelxr 11036 ltxrlt 11045 ltxr 12851 shftidt2 14792 prdsle 17173 prdsless 17174 prdsleval 17188 dfiso2 17484 joindm 18093 meetdm 18107 gaorb 18913 efgcpbllema 19360 frgpuplem 19378 dvdsrzring 20683 pjfval2 20916 ltbval 21244 ltbwe 21245 opsrle 21248 opsrtoslem1 21262 opsrtoslem2 21263 lmfval 22383 lmbr 22409 lgsquadlem3 26530 perpln1 27071 outpasch 27116 ishpg 27120 axcontlem2 27333 wksfval 27976 wlkson 28024 pthsfval 28089 ispth 28091 dfadj2 30247 dmadjss 30249 cnvadj 30254 mpomptxf 31016 lsmsnorb2 31580 satfv0 33320 satfvsuclem1 33321 satfvsuclem2 33322 satfbrsuc 33328 satf0 33334 satf0suclem 33337 fmlasuc0 33346 fneer 34542 bj-dfmpoa 35289 bj-mpomptALT 35290 bj-brab2a1 35320 bj-imdiridlem 35356 bj-opabco 35359 opropabco 35882 cnvepres 36433 inxp2 36497 xrninxp 36518 xrninxp2 36519 rnxrnres 36525 rnxrncnvepres 36526 rnxrnidres 36527 dfcoss2 36539 dfcoss3 36540 1cossres 36552 dfcoels 36553 br1cosscnvxrn 36592 1cosscnvxrn 36593 coss0 36597 cossid 36598 dfssr2 36617 cmtfvalN 37224 cmtvalN 37225 cvrfval 37282 cvrval 37283 dicval2 39193 fgraphopab 41035 fgraphxp 41036 mptssid 42785 dfnelbr2 44765 opabbrfex0d 44778 opabbrfexd 44780 upwlksfval 45297 xpsnopab 45319 mpomptx2 45670 |
Copyright terms: Public domain | W3C validator |