| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabbii | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ 𝑧 = 𝑧 | |
| 2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
| 4 | 3 | opabbidv 5168 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 {copab 5164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-opab 5165 |
| This theorem is referenced by: mptv 5208 2rbropap 5519 dfid4 5527 fconstmpt 5693 xpundi 5700 xpundir 5701 inxpOLD 5786 csbcnv 5837 cnvco 5839 resopab 5994 opabresid 6010 cnvi 6102 cnvun 6103 cnvxp 6118 cnvcnv3 6149 coundi 6208 coundir 6209 mptun 6646 fvopab6 6984 fmptsng 7124 fmptsnd 7125 cbvoprab1 7456 cbvoprab12 7458 dmoprabss 7473 mpomptx 7482 resoprab 7487 elrnmpores 7507 ov6g 7533 1st2val 7975 2nd2val 7976 dfoprab3s 8011 dfoprab3 8012 dfoprab4 8013 opabn1stprc 8016 mptmpoopabbrd 8038 mptmpoopabbrdOLD 8039 fsplit 8073 mapsncnv 8843 xpcomco 9008 marypha2lem2 9363 oemapso 9611 ttrclresv 9646 leweon 9940 r0weon 9941 compsscnv 10300 fpwwe 10575 ltrelxr 11211 ltxrlt 11220 ltxr 13051 shftidt2 15023 prdsle 17401 prdsless 17402 prdsleval 17416 dfiso2 17710 joindm 18310 meetdm 18324 gaorb 19215 efgcpbllema 19660 frgpuplem 19678 dvdsrzring 21347 pjfval2 21594 ltbval 21926 ltbwe 21927 opsrle 21930 opsrtoslem1 21938 opsrtoslem2 21939 lmfval 23095 lmbr 23121 lgsquadlem3 27269 perpln1 28613 outpasch 28658 ishpg 28662 axcontlem2 28868 wksfval 29513 wlkson 29558 pthsfval 29622 ispth 29624 dfadj2 31787 dmadjss 31789 cnvadj 31794 mpomptxf 32574 lsmsnorb2 33336 satfv0 35318 satfvsuclem1 35319 satfvsuclem2 35320 satfbrsuc 35326 satf0 35332 satf0suclem 35335 fmlasuc0 35344 fneer 36314 bj-dfmpoa 37079 bj-mpomptALT 37080 bj-brab2a1 37110 bj-imdiridlem 37146 bj-opabco 37149 opropabco 37691 cnvepres 38259 inxp2 38322 disjecxrn 38348 xrninxp 38351 xrninxp2 38352 rnxrnres 38358 rnxrncnvepres 38359 rnxrnidres 38360 dfcoss2 38377 dfcoss3 38378 cosscnv 38380 coss1cnvres 38381 coss2cnvepres 38382 1cossres 38393 dfcoels 38394 ressn2 38406 br1cosscnvxrn 38438 1cosscnvxrn 38439 coss0 38443 cossid 38444 dfssr2 38463 cmtfvalN 39176 cmtvalN 39177 cvrfval 39234 cvrval 39235 dicval2 41146 aks6d1c1p1rcl 42069 aks6d1c1rh 42086 fgraphopab 43165 fgraphxp 43166 modelaxreplem2 44942 mptssid 45208 dfnelbr2 47247 opabbrfex0d 47260 opabbrfexd 47262 upwlksfval 48096 xpsnopab 48118 mpomptx2 48296 upfval2 49139 |
| Copyright terms: Public domain | W3C validator |