![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xpiun | Structured version Visualization version GIF version |
Description: A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
xpiun | ⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsnopab 47219 | . . . . 5 ⊢ ({𝑥} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} | |
2 | 1 | eqcomi 2737 | . . . 4 ⊢ {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ({𝑥} × 𝐶) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐵 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ({𝑥} × 𝐶)) |
4 | 3 | iuneq2i 5017 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ∪ 𝑥 ∈ 𝐵 ({𝑥} × 𝐶) |
5 | iunxpconst 5750 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 ({𝑥} × 𝐶) = (𝐵 × 𝐶) | |
6 | 4, 5 | eqtr2i 2757 | 1 ⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∈ wcel 2099 {csn 4629 ∪ ciun 4996 {copab 5210 × cxp 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-11 2147 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-iun 4998 df-opab 5211 df-xp 5684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |