![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xpiun | Structured version Visualization version GIF version |
Description: A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
xpiun | ⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsnopab 46525 | . . . . 5 ⊢ ({𝑥} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} | |
2 | 1 | eqcomi 2741 | . . . 4 ⊢ {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ({𝑥} × 𝐶) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐵 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ({𝑥} × 𝐶)) |
4 | 3 | iuneq2i 5018 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ∪ 𝑥 ∈ 𝐵 ({𝑥} × 𝐶) |
5 | iunxpconst 5748 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 ({𝑥} × 𝐶) = (𝐵 × 𝐶) | |
6 | 4, 5 | eqtr2i 2761 | 1 ⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 {csn 4628 ∪ ciun 4997 {copab 5210 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-iun 4999 df-opab 5211 df-xp 5682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |