Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpiun Structured version   Visualization version   GIF version

Theorem xpiun 46526
Description: A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
xpiun (𝐵 × 𝐶) = 𝑥𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)}
Distinct variable groups:   𝑥,𝐵   𝐶,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎,𝑏)

Proof of Theorem xpiun
StepHypRef Expression
1 xpsnopab 46525 . . . . 5 ({𝑥} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)}
21eqcomi 2741 . . . 4 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)} = ({𝑥} × 𝐶)
32a1i 11 . . 3 (𝑥𝐵 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)} = ({𝑥} × 𝐶))
43iuneq2i 5018 . 2 𝑥𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)} = 𝑥𝐵 ({𝑥} × 𝐶)
5 iunxpconst 5748 . 2 𝑥𝐵 ({𝑥} × 𝐶) = (𝐵 × 𝐶)
64, 5eqtr2i 2761 1 (𝐵 × 𝐶) = 𝑥𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  {csn 4628   ciun 4997  {copab 5210   × cxp 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-iun 4999  df-opab 5211  df-xp 5682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator