Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpiun Structured version   Visualization version   GIF version

Theorem xpiun 47081
Description: A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
xpiun (𝐵 × 𝐶) = 𝑥𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)}
Distinct variable groups:   𝑥,𝐵   𝐶,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎,𝑏)

Proof of Theorem xpiun
StepHypRef Expression
1 xpsnopab 47080 . . . . 5 ({𝑥} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)}
21eqcomi 2733 . . . 4 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)} = ({𝑥} × 𝐶)
32a1i 11 . . 3 (𝑥𝐵 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)} = ({𝑥} × 𝐶))
43iuneq2i 5009 . 2 𝑥𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)} = 𝑥𝐵 ({𝑥} × 𝐶)
5 iunxpconst 5739 . 2 𝑥𝐵 ({𝑥} × 𝐶) = (𝐵 × 𝐶)
64, 5eqtr2i 2753 1 (𝐵 × 𝐶) = 𝑥𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  {csn 4621   ciun 4988  {copab 5201   × cxp 5665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-iun 4990  df-opab 5202  df-xp 5673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator