Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpiun Structured version   Visualization version   GIF version

Theorem xpiun 48282
Description: A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
xpiun (𝐵 × 𝐶) = 𝑥𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)}
Distinct variable groups:   𝑥,𝐵   𝐶,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎,𝑏)

Proof of Theorem xpiun
StepHypRef Expression
1 xpsnopab 48281 . . . . 5 ({𝑥} × 𝐶) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)}
21eqcomi 2742 . . . 4 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)} = ({𝑥} × 𝐶)
32a1i 11 . . 3 (𝑥𝐵 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)} = ({𝑥} × 𝐶))
43iuneq2i 4963 . 2 𝑥𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)} = 𝑥𝐵 ({𝑥} × 𝐶)
5 iunxpconst 5692 . 2 𝑥𝐵 ({𝑥} × 𝐶) = (𝐵 × 𝐶)
64, 5eqtr2i 2757 1 (𝐵 × 𝐶) = 𝑥𝐵 {⟨𝑎, 𝑏⟩ ∣ (𝑎 = 𝑥𝑏𝐶)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  {csn 4575   ciun 4941  {copab 5155   × cxp 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-iun 4943  df-opab 5156  df-xp 5625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator