| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xpiun | Structured version Visualization version GIF version | ||
| Description: A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| xpiun | ⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsnopab 48099 | . . . . 5 ⊢ ({𝑥} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} | |
| 2 | 1 | eqcomi 2745 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ({𝑥} × 𝐶) |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐵 → {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ({𝑥} × 𝐶)) |
| 4 | 3 | iuneq2i 4994 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} = ∪ 𝑥 ∈ 𝐵 ({𝑥} × 𝐶) |
| 5 | iunxpconst 5732 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 ({𝑥} × 𝐶) = (𝐵 × 𝐶) | |
| 6 | 4, 5 | eqtr2i 2760 | 1 ⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4606 ∪ ciun 4972 {copab 5186 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-iun 4974 df-opab 5187 df-xp 5665 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |