| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xp | Structured version Visualization version GIF version | ||
| Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) (ex-xp 30384). Another example is that the set of rational numbers is defined in df-q 12973 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxp 5663 | . 2 class (𝐴 × 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1538 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2107 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1538 | . . . . 5 class 𝑦 |
| 9 | 8, 2 | wcel 2107 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 11 | 10, 4, 7 | copab 5185 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 12 | 3, 11 | wceq 1539 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: xpeq1 5679 xpss12 5680 xpeq2 5686 elxpi 5687 elxp 5688 nfxp 5698 fconstmpt 5727 xpundi 5734 xpundir 5735 elopaelxp 5755 opabssxp 5758 csbxp 5765 ssrel 5772 ssrelOLD 5773 relopabiv 5810 relopabi 5812 inxpOLD 5823 dmxpOLD 5920 resopab 6032 cnvxp 6157 xpco 6289 1st2val 8024 2nd2val 8025 dfxp3 8068 marypha2lem2 9458 wemapwe 9719 cardf2 9965 dfac3 10143 axdc2lem 10470 fpwwe2lem1 10653 canthwe 10673 xpcogend 14996 shftfval 15092 ipoval 18545 ipolerval 18547 eqgfval 19164 frgpuplem 19759 pjfval2 21684 ltbwe 22017 opsrtoslem1 22028 2ndcctbss 23410 ulmval 26360 lgsquadlem3 27363 iscgrg 28457 ishpg 28704 nvss 30541 ajfval 30757 fpwrelmap 32680 afsval 34661 cvmlift2lem12 35294 bj-opabssvv 37126 bj-xpcossxp 37165 dicval 41153 dnwech 43038 fgraphopab 43193 areaquad 43206 csbxpgVD 44886 relopabVD 44893 dfnelbr2 47258 xpsnopab 48046 |
| Copyright terms: Public domain | W3C validator |