![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-xp | Structured version Visualization version GIF version |
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) (ex-xp 30468). Another example is that the set of rational numbers is defined in df-q 13014 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cxp 5698 | . 2 class (𝐴 × 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1536 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1536 | . . . . 5 class 𝑦 |
9 | 8, 2 | wcel 2108 | . . . 4 wff 𝑦 ∈ 𝐵 |
10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
11 | 10, 4, 7 | copab 5228 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
12 | 3, 11 | wceq 1537 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: xpeq1 5714 xpss12 5715 xpeq2 5721 elxpi 5722 elxp 5723 nfxp 5733 fconstmpt 5762 xpundi 5768 xpundir 5769 elopaelxp 5789 opabssxp 5792 csbxp 5799 ssrel 5806 ssrelOLD 5807 relopabiv 5844 relopabi 5846 inxpOLD 5857 dmxpOLD 5954 resopab 6063 cnvxp 6188 xpco 6320 1st2val 8058 2nd2val 8059 dfxp3 8102 marypha2lem2 9505 wemapwe 9766 cardf2 10012 dfac3 10190 axdc2lem 10517 fpwwe2lem1 10700 canthwe 10720 xpcogend 15023 shftfval 15119 ipoval 18600 ipolerval 18602 eqgfval 19216 frgpuplem 19814 pjfval2 21752 ltbwe 22085 opsrtoslem1 22102 2ndcctbss 23484 ulmval 26441 lgsquadlem3 27444 iscgrg 28538 ishpg 28785 nvss 30625 ajfval 30841 fpwrelmap 32747 afsval 34648 cvmlift2lem12 35282 bj-opabssvv 37116 bj-xpcossxp 37155 dicval 41133 dnwech 43005 fgraphopab 43164 areaquad 43177 csbxpgVD 44865 relopabVD 44872 dfnelbr2 47188 xpsnopab 47880 |
Copyright terms: Public domain | W3C validator |