| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xp | Structured version Visualization version GIF version | ||
| Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) (ex-xp 30398). Another example is that the set of rational numbers is defined in df-q 12868 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxp 5621 | . 2 class (𝐴 × 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . 5 class 𝑦 |
| 9 | 8, 2 | wcel 2109 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 11 | 10, 4, 7 | copab 5157 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 12 | 3, 11 | wceq 1540 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: xpeq1 5637 xpss12 5638 xpeq2 5644 elxpi 5645 elxp 5646 nfxp 5656 fconstmpt 5685 xpundi 5692 xpundir 5693 elopaelxp 5713 opabssxp 5715 csbxp 5723 ssrel 5730 relopabiv 5767 relopabi 5769 inxpOLD 5779 resopab 5989 cnvxp 6110 xpco 6241 1st2val 7959 2nd2val 7960 dfxp3 8003 marypha2lem2 9345 wemapwe 9612 cardf2 9858 dfac3 10034 axdc2lem 10361 fpwwe2lem1 10544 canthwe 10564 xpcogend 14899 shftfval 14995 ipoval 18454 ipolerval 18456 eqgfval 19073 frgpuplem 19669 pjfval2 21634 ltbwe 21967 opsrtoslem1 21978 2ndcctbss 23358 ulmval 26305 lgsquadlem3 27309 iscgrg 28475 ishpg 28722 nvss 30555 ajfval 30771 fpwrelmap 32689 afsval 34638 cvmlift2lem12 35286 bj-opabssvv 37123 bj-xpcossxp 37162 dicval 41155 dnwech 43021 fgraphopab 43176 areaquad 43189 csbxpgVD 44867 relopabVD 44874 dfnelbr2 47258 xpsnopab 48142 |
| Copyright terms: Public domain | W3C validator |