| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xp | Structured version Visualization version GIF version | ||
| Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) (ex-xp 30418). Another example is that the set of rational numbers is defined in df-q 12849 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxp 5617 | . 2 class (𝐴 × 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1540 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2113 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1540 | . . . . 5 class 𝑦 |
| 9 | 8, 2 | wcel 2113 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 11 | 10, 4, 7 | copab 5155 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 12 | 3, 11 | wceq 1541 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: xpeq1 5633 xpss12 5634 xpeq2 5640 elxpi 5641 elxp 5642 nfxp 5652 fconstmpt 5681 xpundi 5688 xpundir 5689 elopaelxp 5709 opabssxp 5711 csbxp 5720 ssrel 5727 relopabiv 5764 relopabi 5766 inxpOLD 5776 resopab 5987 cnvxp 6109 xpco 6241 1st2val 7955 2nd2val 7956 dfxp3 7999 marypha2lem2 9327 wemapwe 9594 cardf2 9843 dfac3 10019 axdc2lem 10346 fpwwe2lem1 10529 canthwe 10549 xpcogend 14883 shftfval 14979 ipoval 18438 ipolerval 18440 eqgfval 19090 frgpuplem 19686 pjfval2 21648 ltbwe 21980 opsrtoslem1 21991 2ndcctbss 23371 ulmval 26317 lgsquadlem3 27321 iscgrg 28491 ishpg 28738 nvss 30575 ajfval 30791 fpwrelmap 32720 afsval 34705 cvmlift2lem12 35379 bj-opabssvv 37215 bj-xpcossxp 37254 dicval 41295 dnwech 43165 fgraphopab 43320 areaquad 43333 csbxpgVD 45010 relopabVD 45017 dfnelbr2 47397 xpsnopab 48281 |
| Copyright terms: Public domain | W3C validator |