| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xp | Structured version Visualization version GIF version | ||
| Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) (ex-xp 30365). Another example is that the set of rational numbers is defined in df-q 12908 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxp 5636 | . 2 class (𝐴 × 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . 5 class 𝑦 |
| 9 | 8, 2 | wcel 2109 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 11 | 10, 4, 7 | copab 5169 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 12 | 3, 11 | wceq 1540 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: xpeq1 5652 xpss12 5653 xpeq2 5659 elxpi 5660 elxp 5661 nfxp 5671 fconstmpt 5700 xpundi 5707 xpundir 5708 elopaelxp 5728 opabssxp 5731 csbxp 5738 ssrel 5745 ssrelOLD 5746 relopabiv 5783 relopabi 5785 inxpOLD 5796 dmxpOLD 5893 resopab 6005 cnvxp 6130 xpco 6262 1st2val 7996 2nd2val 7997 dfxp3 8040 marypha2lem2 9387 wemapwe 9650 cardf2 9896 dfac3 10074 axdc2lem 10401 fpwwe2lem1 10584 canthwe 10604 xpcogend 14940 shftfval 15036 ipoval 18489 ipolerval 18491 eqgfval 19108 frgpuplem 19702 pjfval2 21618 ltbwe 21951 opsrtoslem1 21962 2ndcctbss 23342 ulmval 26289 lgsquadlem3 27293 iscgrg 28439 ishpg 28686 nvss 30522 ajfval 30738 fpwrelmap 32656 afsval 34662 cvmlift2lem12 35301 bj-opabssvv 37138 bj-xpcossxp 37177 dicval 41170 dnwech 43037 fgraphopab 43192 areaquad 43205 csbxpgVD 44883 relopabVD 44890 dfnelbr2 47271 xpsnopab 48142 |
| Copyright terms: Public domain | W3C validator |