![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-xp | Structured version Visualization version GIF version |
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}) (ex-xp 29689). Another example is that the set of rational numbers is defined in df-q 12933 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-xp | ⊢ (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cxp 5675 | . 2 class (𝐴 × 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1541 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2107 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1541 | . . . . 5 class 𝑦 |
9 | 8, 2 | wcel 2107 | . . . 4 wff 𝑦 ∈ 𝐵 |
10 | 6, 9 | wa 397 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
11 | 10, 4, 7 | copab 5211 | . 2 class {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
12 | 3, 11 | wceq 1542 | 1 wff (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: xpeq1 5691 xpss12 5692 xpeq2 5698 elxpi 5699 elxp 5700 nfxp 5710 fconstmpt 5739 xpundi 5745 xpundir 5746 elopaelxp 5766 opabssxp 5769 csbxp 5776 ssrel 5783 ssrelOLD 5784 relopabiv 5821 relopabi 5823 inxp 5833 dmxp 5929 resopab 6035 cnvxp 6157 xpco 6289 1st2val 8003 2nd2val 8004 dfxp3 8047 marypha2lem2 9431 wemapwe 9692 cardf2 9938 dfac3 10116 axdc2lem 10443 fpwwe2lem1 10626 canthwe 10646 xpcogend 14921 shftfval 15017 ipoval 18483 ipolerval 18485 eqgfval 19056 frgpuplem 19640 pjfval2 21264 ltbwe 21599 opsrtoslem1 21616 2ndcctbss 22959 ulmval 25892 lgsquadlem3 26885 iscgrg 27763 ishpg 28010 nvss 29846 ajfval 30062 fpwrelmap 31958 afsval 33683 cvmlift2lem12 34305 bj-opabssvv 36031 bj-xpcossxp 36070 dicval 40047 dnwech 41790 fgraphopab 41952 areaquad 41965 csbxpgVD 43655 relopabVD 43662 dfnelbr2 45981 xpsnopab 46535 |
Copyright terms: Public domain | W3C validator |