| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xp | Structured version Visualization version GIF version | ||
| Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) (ex-xp 30363). Another example is that the set of rational numbers is defined in df-q 12963 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxp 5652 | . 2 class (𝐴 × 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . 5 class 𝑦 |
| 9 | 8, 2 | wcel 2108 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 11 | 10, 4, 7 | copab 5181 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 12 | 3, 11 | wceq 1540 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: xpeq1 5668 xpss12 5669 xpeq2 5675 elxpi 5676 elxp 5677 nfxp 5687 fconstmpt 5716 xpundi 5723 xpundir 5724 elopaelxp 5744 opabssxp 5747 csbxp 5754 ssrel 5761 ssrelOLD 5762 relopabiv 5799 relopabi 5801 inxpOLD 5812 dmxpOLD 5909 resopab 6021 cnvxp 6146 xpco 6278 1st2val 8014 2nd2val 8015 dfxp3 8058 marypha2lem2 9446 wemapwe 9709 cardf2 9955 dfac3 10133 axdc2lem 10460 fpwwe2lem1 10643 canthwe 10663 xpcogend 14991 shftfval 15087 ipoval 18538 ipolerval 18540 eqgfval 19157 frgpuplem 19751 pjfval2 21667 ltbwe 22000 opsrtoslem1 22011 2ndcctbss 23391 ulmval 26339 lgsquadlem3 27343 iscgrg 28437 ishpg 28684 nvss 30520 ajfval 30736 fpwrelmap 32656 afsval 34649 cvmlift2lem12 35282 bj-opabssvv 37114 bj-xpcossxp 37153 dicval 41141 dnwech 43019 fgraphopab 43174 areaquad 43187 csbxpgVD 44866 relopabVD 44873 dfnelbr2 47250 xpsnopab 48080 |
| Copyright terms: Public domain | W3C validator |