| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xp | Structured version Visualization version GIF version | ||
| Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) (ex-xp 30411). Another example is that the set of rational numbers is defined in df-q 12844 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cxp 5614 | . 2 class (𝐴 × 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1540 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2111 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1540 | . . . . 5 class 𝑦 |
| 9 | 8, 2 | wcel 2111 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 11 | 10, 4, 7 | copab 5153 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 12 | 3, 11 | wceq 1541 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: xpeq1 5630 xpss12 5631 xpeq2 5637 elxpi 5638 elxp 5639 nfxp 5649 fconstmpt 5678 xpundi 5685 xpundir 5686 elopaelxp 5706 opabssxp 5708 csbxp 5716 ssrel 5723 relopabiv 5760 relopabi 5762 inxpOLD 5772 resopab 5983 cnvxp 6104 xpco 6236 1st2val 7949 2nd2val 7950 dfxp3 7993 marypha2lem2 9320 wemapwe 9587 cardf2 9833 dfac3 10009 axdc2lem 10336 fpwwe2lem1 10519 canthwe 10539 xpcogend 14878 shftfval 14974 ipoval 18433 ipolerval 18435 eqgfval 19086 frgpuplem 19682 pjfval2 21644 ltbwe 21977 opsrtoslem1 21988 2ndcctbss 23368 ulmval 26314 lgsquadlem3 27318 iscgrg 28488 ishpg 28735 nvss 30568 ajfval 30784 fpwrelmap 32711 afsval 34679 cvmlift2lem12 35346 bj-opabssvv 37183 bj-xpcossxp 37222 dicval 41214 dnwech 43080 fgraphopab 43235 areaquad 43248 csbxpgVD 44925 relopabVD 44932 dfnelbr2 47303 xpsnopab 48187 |
| Copyright terms: Public domain | W3C validator |