Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-xp | Structured version Visualization version GIF version |
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) (ex-xp 28676). Another example is that the set of rational numbers is defined in df-q 12593 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cxp 5577 | . 2 class (𝐴 × 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1542 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2112 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1542 | . . . . 5 class 𝑦 |
9 | 8, 2 | wcel 2112 | . . . 4 wff 𝑦 ∈ 𝐵 |
10 | 6, 9 | wa 399 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
11 | 10, 4, 7 | copab 5132 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
12 | 3, 11 | wceq 1543 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: xpeq1 5593 xpss12 5594 xpeq2 5600 elxpi 5601 elxp 5602 nfxp 5612 fconstmpt 5639 xpundi 5645 xpundir 5646 opabssxp 5668 csbxp 5675 ssrel 5682 relopabiv 5718 relopabi 5720 inxp 5729 dmxp 5826 resopab 5930 cnvxp 6048 xpco 6180 1st2val 7829 2nd2val 7830 dfxp3 7871 marypha2lem2 9100 wemapwe 9360 cardf2 9607 dfac3 9783 axdc2lem 10110 fpwwe2lem1 10293 canthwe 10313 xpcogend 14588 shftfval 14684 ipoval 18138 ipolerval 18140 eqgfval 18694 frgpuplem 19268 pjfval2 20801 ltbwe 21130 opsrtoslem1 21147 2ndcctbss 22489 ulmval 25419 lgsquadlem3 26410 iscgrg 26752 ishpg 26999 nvss 28831 ajfval 29047 fpwrelmap 30945 afsval 32526 cvmlift2lem12 33151 bj-opabssvv 35224 bj-xpcossxp 35263 dicval 39096 dnwech 40761 fgraphopab 40923 areaquad 40935 csbxpgVD 42376 relopabVD 42383 dfnelbr2 44625 xpsnopab 45180 |
Copyright terms: Public domain | W3C validator |