![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-xp | Structured version Visualization version GIF version |
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) (ex-xp 30464). Another example is that the set of rational numbers is defined in df-q 12988 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cxp 5686 | . 2 class (𝐴 × 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1535 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2105 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1535 | . . . . 5 class 𝑦 |
9 | 8, 2 | wcel 2105 | . . . 4 wff 𝑦 ∈ 𝐵 |
10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
11 | 10, 4, 7 | copab 5209 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
12 | 3, 11 | wceq 1536 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: xpeq1 5702 xpss12 5703 xpeq2 5709 elxpi 5710 elxp 5711 nfxp 5721 fconstmpt 5750 xpundi 5756 xpundir 5757 elopaelxp 5777 opabssxp 5780 csbxp 5787 ssrel 5794 ssrelOLD 5795 relopabiv 5832 relopabi 5834 inxpOLD 5845 dmxpOLD 5942 resopab 6053 cnvxp 6178 xpco 6310 1st2val 8040 2nd2val 8041 dfxp3 8084 marypha2lem2 9473 wemapwe 9734 cardf2 9980 dfac3 10158 axdc2lem 10485 fpwwe2lem1 10668 canthwe 10688 xpcogend 15009 shftfval 15105 ipoval 18587 ipolerval 18589 eqgfval 19206 frgpuplem 19804 pjfval2 21746 ltbwe 22079 opsrtoslem1 22096 2ndcctbss 23478 ulmval 26437 lgsquadlem3 27440 iscgrg 28534 ishpg 28781 nvss 30621 ajfval 30837 fpwrelmap 32750 afsval 34664 cvmlift2lem12 35298 bj-opabssvv 37132 bj-xpcossxp 37171 dicval 41158 dnwech 43036 fgraphopab 43191 areaquad 43204 csbxpgVD 44891 relopabVD 44898 dfnelbr2 47222 xpsnopab 48000 |
Copyright terms: Public domain | W3C validator |