MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xp Structured version   Visualization version   GIF version

Definition df-xp 5622
Description: Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}) (ex-xp 30411). Another example is that the set of rational numbers is defined in df-q 12844 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-xp (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Detailed syntax breakdown of Definition df-xp
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cxp 5614 . 2 class (𝐴 × 𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1540 . . . . 5 class 𝑥
65, 1wcel 2111 . . . 4 wff 𝑥𝐴
7 vy . . . . . 6 setvar 𝑦
87cv 1540 . . . . 5 class 𝑦
98, 2wcel 2111 . . . 4 wff 𝑦𝐵
106, 9wa 395 . . 3 wff (𝑥𝐴𝑦𝐵)
1110, 4, 7copab 5153 . 2 class {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
123, 11wceq 1541 1 wff (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  xpeq1  5630  xpss12  5631  xpeq2  5637  elxpi  5638  elxp  5639  nfxp  5649  fconstmpt  5678  xpundi  5685  xpundir  5686  elopaelxp  5706  opabssxp  5708  csbxp  5716  ssrel  5723  relopabiv  5760  relopabi  5762  inxpOLD  5772  resopab  5983  cnvxp  6104  xpco  6236  1st2val  7949  2nd2val  7950  dfxp3  7993  marypha2lem2  9320  wemapwe  9587  cardf2  9833  dfac3  10009  axdc2lem  10336  fpwwe2lem1  10519  canthwe  10539  xpcogend  14878  shftfval  14974  ipoval  18433  ipolerval  18435  eqgfval  19086  frgpuplem  19682  pjfval2  21644  ltbwe  21977  opsrtoslem1  21988  2ndcctbss  23368  ulmval  26314  lgsquadlem3  27318  iscgrg  28488  ishpg  28735  nvss  30568  ajfval  30784  fpwrelmap  32711  afsval  34679  cvmlift2lem12  35346  bj-opabssvv  37183  bj-xpcossxp  37222  dicval  41214  dnwech  43080  fgraphopab  43235  areaquad  43248  csbxpgVD  44925  relopabVD  44932  dfnelbr2  47303  xpsnopab  48187
  Copyright terms: Public domain W3C validator