Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0dmfun Structured version   Visualization version   GIF version

Theorem ovn0dmfun 48030
Description: If a class operation value for two operands is not the empty set, then the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6929. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
ovn0dmfun ((𝐴𝐹𝐵) ≠ ∅ → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩})))

Proof of Theorem ovn0dmfun
StepHypRef Expression
1 df-ov 7416 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
21neeq1i 2995 . 2 ((𝐴𝐹𝐵) ≠ ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) ≠ ∅)
3 fvfundmfvn0 6929 . 2 ((𝐹‘⟨𝐴, 𝐵⟩) ≠ ∅ → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩})))
42, 3sylbi 217 1 ((𝐴𝐹𝐵) ≠ ∅ → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wne 2931  c0 4313  {csn 4606  cop 4612  dom cdm 5665  cres 5667  Fun wfun 6535  cfv 6541  (class class class)co 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator