![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn0dmfun | Structured version Visualization version GIF version |
Description: If a class operation value for two operands is not the empty set, then the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6957. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
ovn0dmfun | ⊢ ((𝐴𝐹𝐵) ≠ ∅ → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7441 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | 1 | neeq1i 3005 | . 2 ⊢ ((𝐴𝐹𝐵) ≠ ∅ ↔ (𝐹‘〈𝐴, 𝐵〉) ≠ ∅) |
3 | fvfundmfvn0 6957 | . 2 ⊢ ((𝐹‘〈𝐴, 𝐵〉) ≠ ∅ → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}))) | |
4 | 2, 3 | sylbi 217 | 1 ⊢ ((𝐴𝐹𝐵) ≠ ∅ → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 ∅c0 4342 {csn 4634 〈cop 4640 dom cdm 5693 ↾ cres 5695 Fun wfun 6563 ‘cfv 6569 (class class class)co 7438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-res 5705 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |