Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0dmfun Structured version   Visualization version   GIF version

Theorem ovn0dmfun 48166
Description: If a class operation value for two operands is not the empty set, then the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6857. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
ovn0dmfun ((𝐴𝐹𝐵) ≠ ∅ → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩})))

Proof of Theorem ovn0dmfun
StepHypRef Expression
1 df-ov 7344 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
21neeq1i 2990 . 2 ((𝐴𝐹𝐵) ≠ ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) ≠ ∅)
3 fvfundmfvn0 6857 . 2 ((𝐹‘⟨𝐴, 𝐵⟩) ≠ ∅ → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩})))
42, 3sylbi 217 1 ((𝐴𝐹𝐵) ≠ ∅ → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝐴, 𝐵⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2110  wne 2926  c0 4281  {csn 4574  cop 4580  dom cdm 5614  cres 5616  Fun wfun 6471  cfv 6477  (class class class)co 7341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator