![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn0dmfun | Structured version Visualization version GIF version |
Description: If a class operation value for two operands is not the empty set, then the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6472. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
ovn0dmfun | ⊢ ((𝐴𝐹𝐵) ≠ ∅ → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6908 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | 1 | neeq1i 3063 | . 2 ⊢ ((𝐴𝐹𝐵) ≠ ∅ ↔ (𝐹‘〈𝐴, 𝐵〉) ≠ ∅) |
3 | fvfundmfvn0 6472 | . 2 ⊢ ((𝐹‘〈𝐴, 𝐵〉) ≠ ∅ → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}))) | |
4 | 2, 3 | sylbi 209 | 1 ⊢ ((𝐴𝐹𝐵) ≠ ∅ → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 ≠ wne 2999 ∅c0 4144 {csn 4397 〈cop 4403 dom cdm 5342 ↾ cres 5344 Fun wfun 6117 ‘cfv 6123 (class class class)co 6905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-res 5354 df-iota 6086 df-fun 6125 df-fv 6131 df-ov 6908 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |