Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq1i Structured version   Visualization version   GIF version

Theorem xrneq1i 38336
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
Hypothesis
Ref Expression
xrneq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
xrneq1i (𝐴𝐶) = (𝐵𝐶)

Proof of Theorem xrneq1i
StepHypRef Expression
1 xrneq1i.1 . 2 𝐴 = 𝐵
2 xrneq1 38335 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2ax-mp 5 1 (𝐴𝐶) = (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cxrn 38136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-in 3983  df-ss 3993  df-br 5167  df-opab 5229  df-co 5709  df-xrn 38329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator