Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq1i Structured version   Visualization version   GIF version

Theorem xrneq1i 37186
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
Hypothesis
Ref Expression
xrneq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
xrneq1i (𝐴𝐶) = (𝐵𝐶)

Proof of Theorem xrneq1i
StepHypRef Expression
1 xrneq1i.1 . 2 𝐴 = 𝐵
2 xrneq1 37185 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2ax-mp 5 1 (𝐴𝐶) = (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cxrn 36980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-in 3954  df-ss 3964  df-br 5148  df-opab 5210  df-co 5684  df-xrn 37179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator