Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq1i Structured version   Visualization version   GIF version

Theorem xrneq1i 36414
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
Hypothesis
Ref Expression
xrneq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
xrneq1i (𝐴𝐶) = (𝐵𝐶)

Proof of Theorem xrneq1i
StepHypRef Expression
1 xrneq1i.1 . 2 𝐴 = 𝐵
2 xrneq1 36413 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2ax-mp 5 1 (𝐴𝐶) = (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  cxrn 36238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rab 3073  df-v 3425  df-in 3891  df-ss 3901  df-br 5071  df-opab 5133  df-co 5588  df-xrn 36407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator