Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq1d Structured version   Visualization version   GIF version

Theorem xrneq1d 38337
Description: Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.)
Hypothesis
Ref Expression
xrneq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
xrneq1d (𝜑 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem xrneq1d
StepHypRef Expression
1 xrneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 xrneq1 38335 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2syl 17 1 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cxrn 38136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-in 3983  df-ss 3993  df-br 5167  df-opab 5229  df-co 5709  df-xrn 38329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator