Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq1d Structured version   Visualization version   GIF version

Theorem xrneq1d 38364
Description: Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.)
Hypothesis
Ref Expression
xrneq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
xrneq1d (𝜑 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem xrneq1d
StepHypRef Expression
1 xrneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 xrneq1 38362 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2syl 17 1 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cxrn 38165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-in 3929  df-ss 3939  df-br 5116  df-opab 5178  df-co 5655  df-xrn 38356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator