Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq1d Structured version   Visualization version   GIF version

Theorem xrneq1d 37760
Description: Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.)
Hypothesis
Ref Expression
xrneq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
xrneq1d (𝜑 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem xrneq1d
StepHypRef Expression
1 xrneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 xrneq1 37758 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2syl 17 1 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  cxrn 37553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-in 3950  df-ss 3960  df-br 5142  df-opab 5204  df-co 5678  df-xrn 37752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator