![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
inex1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | zfauscl 5301 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
3 | dfcleq 2721 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
4 | elin 3963 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | albii 1814 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
8 | 7 | exbii 1843 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
9 | 2, 8 | mpbir 230 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
10 | 9 | issetri 3488 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3471 ∩ cin 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 |
This theorem is referenced by: inex2 5318 inex1g 5319 inuni 5345 onfr 6408 ssimaex 6983 exfo 7115 ofmres 7988 fipwuni 9450 fisn 9451 elfiun 9454 dffi3 9455 marypha1lem 9457 epfrs 9755 tcmin 9765 bnd2 9917 kmlem13 10186 brdom3 10552 brdom5 10553 brdom4 10554 fpwwe 10670 canthwelem 10674 pwfseqlem4 10686 ingru 10839 ltweuz 13959 elrest 17409 invfval 17742 isoval 17748 isofn 17758 zeroofn 17978 zerooval 17984 catcval 18089 isacs5lem 18537 isunit 20312 isrhm 20417 rhmfn 20438 rhmval 20439 rhmsubclem1 20618 2idlval 21145 pjfval 21640 psdmul 22090 fctop 22920 cctop 22922 ppttop 22923 epttop 22925 mretopd 23009 toponmre 23010 tgrest 23076 resttopon 23078 restco 23081 ordtbas2 23108 cnrest2 23203 cnpresti 23205 cnprest 23206 cnprest2 23207 cmpsublem 23316 cmpsub 23317 connsuba 23337 1stcrest 23370 subislly 23398 cldllycmp 23412 lly1stc 23413 txrest 23548 basqtop 23628 fbssfi 23754 trfbas2 23760 snfil 23781 fgcl 23795 trfil2 23804 cfinfil 23810 csdfil 23811 supfil 23812 zfbas 23813 fin1aufil 23849 fmfnfmlem3 23873 flimrest 23900 hauspwpwf1 23904 fclsrest 23941 tmdgsum2 24013 tsmsval2 24047 tsmssubm 24060 ustuqtop2 24160 restmetu 24492 isnmhm 24676 icopnfhmeo 24881 iccpnfhmeo 24883 xrhmeo 24884 pi1buni 24980 minveclem3b 25369 uniioombllem2 25525 uniioombllem6 25530 vitali 25555 ellimc2 25819 limcflf 25823 taylfvallem 26305 taylf 26308 tayl0 26309 taylpfval 26312 xrlimcnp 26913 lrrecse 27872 ewlkle 29432 upgrewlkle2 29433 wlk1walk 29466 maprnin 32526 ordtprsval 33519 ordtprsuni 33520 ordtrestNEW 33522 ordtrest2NEWlem 33523 ordtrest2NEW 33524 ordtconnlem1 33525 xrge0iifhmeo 33537 eulerpartgbij 33992 eulerpartlemmf 33995 eulerpart 34002 ballotlemfrc 34146 cvmsss2 34884 cvmcov2 34885 mvrsval 35115 mpstval 35145 mclsind 35180 mthmpps 35192 dfon2lem4 35382 brapply 35534 neibastop1 35843 filnetlem3 35864 bj-restn0 36569 bj-restuni 36576 ptrest 37092 heiborlem3 37286 heibor 37294 polvalN 39378 fnwe2lem2 42475 harval3 42968 superficl 42997 ssficl 42999 trficl 43099 onfrALTlem5 43981 onfrALTlem5VD 44324 fourierdlem48 45542 fourierdlem49 45543 sge0resplit 45794 hoiqssbllem3 46012 rngcvalALTV 47327 rhmsubcALTVlem1 47343 ringcvalALTV 47351 |
Copyright terms: Public domain | W3C validator |