| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| inex1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | zfauscl 5248 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 3 | dfcleq 2722 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
| 4 | elin 3927 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 6 | 5 | albii 1819 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 8 | 7 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 9 | 2, 8 | mpbir 231 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
| 10 | 9 | issetri 3463 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 |
| This theorem is referenced by: inex2 5268 inex1g 5269 inuni 5300 onfr 6359 ssimaex 6928 exfo 7059 ofmres 7942 fipwuni 9353 fisn 9354 elfiun 9357 dffi3 9358 marypha1lem 9360 epfrs 9660 tcmin 9670 bnd2 9822 kmlem13 10092 brdom3 10457 brdom5 10458 brdom4 10459 fpwwe 10575 canthwelem 10579 pwfseqlem4 10591 ingru 10744 ltweuz 13902 elrest 17366 invfval 17701 isoval 17707 isofn 17717 zeroofn 17931 zerooval 17937 catcval 18042 isacs5lem 18486 isunit 20293 isrhm 20398 rhmfn 20419 rhmval 20420 rhmsubclem1 20605 2idlval 21193 pjfval 21648 psdmul 22086 fctop 22924 cctop 22926 ppttop 22927 epttop 22929 mretopd 23012 toponmre 23013 tgrest 23079 resttopon 23081 restco 23084 ordtbas2 23111 cnrest2 23206 cnpresti 23208 cnprest 23209 cnprest2 23210 cmpsublem 23319 cmpsub 23320 connsuba 23340 1stcrest 23373 subislly 23401 cldllycmp 23415 lly1stc 23416 txrest 23551 basqtop 23631 fbssfi 23757 trfbas2 23763 snfil 23784 fgcl 23798 trfil2 23807 cfinfil 23813 csdfil 23814 supfil 23815 zfbas 23816 fin1aufil 23852 fmfnfmlem3 23876 flimrest 23903 hauspwpwf1 23907 fclsrest 23944 tmdgsum2 24016 tsmsval2 24050 tsmssubm 24063 ustuqtop2 24163 restmetu 24491 isnmhm 24667 icopnfhmeo 24874 iccpnfhmeo 24876 xrhmeo 24877 pi1buni 24973 minveclem3b 25361 uniioombllem2 25517 uniioombllem6 25522 vitali 25547 ellimc2 25811 limcflf 25815 taylfvallem 26298 taylf 26301 tayl0 26302 taylpfval 26305 xrlimcnp 26911 lrrecse 27889 ewlkle 29586 upgrewlkle2 29587 wlk1walk 29619 maprnin 32704 ordtprsval 33901 ordtprsuni 33902 ordtrestNEW 33904 ordtrest2NEWlem 33905 ordtrest2NEW 33906 ordtconnlem1 33907 xrge0iifhmeo 33919 eulerpartgbij 34356 eulerpartlemmf 34359 eulerpart 34366 ballotlemfrc 34511 cvmsss2 35254 cvmcov2 35255 mvrsval 35485 mpstval 35515 mclsind 35550 mthmpps 35562 dfon2lem4 35767 brapply 35919 neibastop1 36340 filnetlem3 36361 weiunfr 36448 bj-restn0 37071 bj-restuni 37078 ptrest 37606 heiborlem3 37800 heibor 37808 polvalN 39892 fnwe2lem2 43033 harval3 43520 superficl 43549 ssficl 43551 trficl 43651 onfrALTlem5 44525 onfrALTlem5VD 44867 fourierdlem48 46145 fourierdlem49 46146 sge0resplit 46397 hoiqssbllem3 46615 rngcvalALTV 48246 rhmsubcALTVlem1 48262 ringcvalALTV 48270 invfn 49012 |
| Copyright terms: Public domain | W3C validator |