| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| inex1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | zfauscl 5268 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 3 | dfcleq 2728 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
| 4 | elin 3942 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 6 | 5 | albii 1819 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 8 | 7 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 9 | 2, 8 | mpbir 231 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
| 10 | 9 | issetri 3478 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 |
| This theorem is referenced by: inex2 5288 inex1g 5289 inuni 5320 onfr 6391 ssimaex 6964 exfo 7095 ofmres 7983 fipwuni 9438 fisn 9439 elfiun 9442 dffi3 9443 marypha1lem 9445 epfrs 9745 tcmin 9755 bnd2 9907 kmlem13 10177 brdom3 10542 brdom5 10543 brdom4 10544 fpwwe 10660 canthwelem 10664 pwfseqlem4 10676 ingru 10829 ltweuz 13979 elrest 17441 invfval 17772 isoval 17778 isofn 17788 zeroofn 18002 zerooval 18008 catcval 18113 isacs5lem 18555 isunit 20333 isrhm 20438 rhmfn 20459 rhmval 20460 rhmsubclem1 20645 2idlval 21212 pjfval 21666 psdmul 22104 fctop 22942 cctop 22944 ppttop 22945 epttop 22947 mretopd 23030 toponmre 23031 tgrest 23097 resttopon 23099 restco 23102 ordtbas2 23129 cnrest2 23224 cnpresti 23226 cnprest 23227 cnprest2 23228 cmpsublem 23337 cmpsub 23338 connsuba 23358 1stcrest 23391 subislly 23419 cldllycmp 23433 lly1stc 23434 txrest 23569 basqtop 23649 fbssfi 23775 trfbas2 23781 snfil 23802 fgcl 23816 trfil2 23825 cfinfil 23831 csdfil 23832 supfil 23833 zfbas 23834 fin1aufil 23870 fmfnfmlem3 23894 flimrest 23921 hauspwpwf1 23925 fclsrest 23962 tmdgsum2 24034 tsmsval2 24068 tsmssubm 24081 ustuqtop2 24181 restmetu 24509 isnmhm 24685 icopnfhmeo 24892 iccpnfhmeo 24894 xrhmeo 24895 pi1buni 24991 minveclem3b 25380 uniioombllem2 25536 uniioombllem6 25541 vitali 25566 ellimc2 25830 limcflf 25834 taylfvallem 26317 taylf 26320 tayl0 26321 taylpfval 26324 xrlimcnp 26930 lrrecse 27901 ewlkle 29585 upgrewlkle2 29586 wlk1walk 29619 maprnin 32708 ordtprsval 33949 ordtprsuni 33950 ordtrestNEW 33952 ordtrest2NEWlem 33953 ordtrest2NEW 33954 ordtconnlem1 33955 xrge0iifhmeo 33967 eulerpartgbij 34404 eulerpartlemmf 34407 eulerpart 34414 ballotlemfrc 34559 cvmsss2 35296 cvmcov2 35297 mvrsval 35527 mpstval 35557 mclsind 35592 mthmpps 35604 dfon2lem4 35804 brapply 35956 neibastop1 36377 filnetlem3 36398 weiunfr 36485 bj-restn0 37108 bj-restuni 37115 ptrest 37643 heiborlem3 37837 heibor 37845 polvalN 39924 fnwe2lem2 43075 harval3 43562 superficl 43591 ssficl 43593 trficl 43693 onfrALTlem5 44567 onfrALTlem5VD 44909 fourierdlem48 46183 fourierdlem49 46184 sge0resplit 46435 hoiqssbllem3 46653 rngcvalALTV 48240 rhmsubcALTVlem1 48256 ringcvalALTV 48264 invfn 49000 |
| Copyright terms: Public domain | W3C validator |