Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
inex1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | zfauscl 5220 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
3 | dfcleq 2731 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
4 | elin 3899 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | albii 1823 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
7 | 3, 6 | bitri 274 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
8 | 7 | exbii 1851 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
9 | 2, 8 | mpbir 230 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
10 | 9 | issetri 3438 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 |
This theorem is referenced by: inex2 5237 inex1g 5238 inuni 5262 onfr 6290 ssimaex 6835 exfo 6963 ofmres 7800 fipwuni 9115 fisn 9116 elfiun 9119 dffi3 9120 marypha1lem 9122 epfrs 9420 tcmin 9430 bnd2 9582 kmlem13 9849 brdom3 10215 brdom5 10216 brdom4 10217 fpwwe 10333 canthwelem 10337 pwfseqlem4 10349 ingru 10502 ltweuz 13609 elrest 17055 invfval 17388 isoval 17394 isofn 17404 zeroofn 17620 zerooval 17626 catcval 17731 isacs5lem 18178 isunit 19814 isrhm 19880 2idlval 20417 pjfval 20823 fctop 22062 cctop 22064 ppttop 22065 epttop 22067 mretopd 22151 toponmre 22152 tgrest 22218 resttopon 22220 restco 22223 ordtbas2 22250 cnrest2 22345 cnpresti 22347 cnprest 22348 cnprest2 22349 cmpsublem 22458 cmpsub 22459 connsuba 22479 1stcrest 22512 subislly 22540 cldllycmp 22554 lly1stc 22555 txrest 22690 basqtop 22770 fbssfi 22896 trfbas2 22902 snfil 22923 fgcl 22937 trfil2 22946 cfinfil 22952 csdfil 22953 supfil 22954 zfbas 22955 fin1aufil 22991 fmfnfmlem3 23015 flimrest 23042 hauspwpwf1 23046 fclsrest 23083 tmdgsum2 23155 tsmsval2 23189 tsmssubm 23202 ustuqtop2 23302 restmetu 23632 isnmhm 23816 icopnfhmeo 24012 iccpnfhmeo 24014 xrhmeo 24015 pi1buni 24109 minveclem3b 24497 uniioombllem2 24652 uniioombllem6 24657 vitali 24682 ellimc2 24946 limcflf 24950 taylfvallem 25422 taylf 25425 tayl0 25426 taylpfval 25429 xrlimcnp 26023 ewlkle 27875 upgrewlkle2 27876 wlk1walk 27908 maprnin 30968 ordtprsval 31770 ordtprsuni 31771 ordtrestNEW 31773 ordtrest2NEWlem 31774 ordtrest2NEW 31775 ordtconnlem1 31776 xrge0iifhmeo 31788 eulerpartgbij 32239 eulerpartlemmf 32242 eulerpart 32249 ballotlemfrc 32393 cvmsss2 33136 cvmcov2 33137 mvrsval 33367 mpstval 33397 mclsind 33432 mthmpps 33444 dfon2lem4 33668 lrrecse 34026 brapply 34167 neibastop1 34475 filnetlem3 34496 bj-restn0 35188 bj-restuni 35195 ptrest 35703 heiborlem3 35898 heibor 35906 polvalN 37846 fnwe2lem2 40792 harval3 41041 superficl 41063 ssficl 41065 trficl 41166 onfrALTlem5 42051 onfrALTlem5VD 42394 fourierdlem48 43585 fourierdlem49 43586 sge0resplit 43834 hoiqssbllem3 44052 rhmfn 45364 rhmval 45365 rngcvalALTV 45407 ringcvalALTV 45453 rhmsubclem1 45532 rhmsubcALTVlem1 45550 |
Copyright terms: Public domain | W3C validator |