| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| inex1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | zfauscl 5253 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 3 | dfcleq 2722 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
| 4 | elin 3930 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 6 | 5 | albii 1819 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 8 | 7 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 9 | 2, 8 | mpbir 231 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
| 10 | 9 | issetri 3466 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 |
| This theorem is referenced by: inex2 5273 inex1g 5274 inuni 5305 onfr 6371 ssimaex 6946 exfo 7077 ofmres 7963 fipwuni 9377 fisn 9378 elfiun 9381 dffi3 9382 marypha1lem 9384 epfrs 9684 tcmin 9694 bnd2 9846 kmlem13 10116 brdom3 10481 brdom5 10482 brdom4 10483 fpwwe 10599 canthwelem 10603 pwfseqlem4 10615 ingru 10768 ltweuz 13926 elrest 17390 invfval 17721 isoval 17727 isofn 17737 zeroofn 17951 zerooval 17957 catcval 18062 isacs5lem 18504 isunit 20282 isrhm 20387 rhmfn 20408 rhmval 20409 rhmsubclem1 20594 2idlval 21161 pjfval 21615 psdmul 22053 fctop 22891 cctop 22893 ppttop 22894 epttop 22896 mretopd 22979 toponmre 22980 tgrest 23046 resttopon 23048 restco 23051 ordtbas2 23078 cnrest2 23173 cnpresti 23175 cnprest 23176 cnprest2 23177 cmpsublem 23286 cmpsub 23287 connsuba 23307 1stcrest 23340 subislly 23368 cldllycmp 23382 lly1stc 23383 txrest 23518 basqtop 23598 fbssfi 23724 trfbas2 23730 snfil 23751 fgcl 23765 trfil2 23774 cfinfil 23780 csdfil 23781 supfil 23782 zfbas 23783 fin1aufil 23819 fmfnfmlem3 23843 flimrest 23870 hauspwpwf1 23874 fclsrest 23911 tmdgsum2 23983 tsmsval2 24017 tsmssubm 24030 ustuqtop2 24130 restmetu 24458 isnmhm 24634 icopnfhmeo 24841 iccpnfhmeo 24843 xrhmeo 24844 pi1buni 24940 minveclem3b 25328 uniioombllem2 25484 uniioombllem6 25489 vitali 25514 ellimc2 25778 limcflf 25782 taylfvallem 26265 taylf 26268 tayl0 26269 taylpfval 26272 xrlimcnp 26878 lrrecse 27849 ewlkle 29533 upgrewlkle2 29534 wlk1walk 29567 maprnin 32654 ordtprsval 33908 ordtprsuni 33909 ordtrestNEW 33911 ordtrest2NEWlem 33912 ordtrest2NEW 33913 ordtconnlem1 33914 xrge0iifhmeo 33926 eulerpartgbij 34363 eulerpartlemmf 34366 eulerpart 34373 ballotlemfrc 34518 cvmsss2 35261 cvmcov2 35262 mvrsval 35492 mpstval 35522 mclsind 35557 mthmpps 35569 dfon2lem4 35774 brapply 35926 neibastop1 36347 filnetlem3 36368 weiunfr 36455 bj-restn0 37078 bj-restuni 37085 ptrest 37613 heiborlem3 37807 heibor 37815 polvalN 39899 fnwe2lem2 43040 harval3 43527 superficl 43556 ssficl 43558 trficl 43658 onfrALTlem5 44532 onfrALTlem5VD 44874 fourierdlem48 46152 fourierdlem49 46153 sge0resplit 46404 hoiqssbllem3 46622 rngcvalALTV 48253 rhmsubcALTVlem1 48269 ringcvalALTV 48277 invfn 49019 |
| Copyright terms: Public domain | W3C validator |