| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| inex1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | zfauscl 5256 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 3 | dfcleq 2723 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
| 4 | elin 3933 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 6 | 5 | albii 1819 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 8 | 7 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 9 | 2, 8 | mpbir 231 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
| 10 | 9 | issetri 3469 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 |
| This theorem is referenced by: inex2 5276 inex1g 5277 inuni 5308 onfr 6374 ssimaex 6949 exfo 7080 ofmres 7966 fipwuni 9384 fisn 9385 elfiun 9388 dffi3 9389 marypha1lem 9391 epfrs 9691 tcmin 9701 bnd2 9853 kmlem13 10123 brdom3 10488 brdom5 10489 brdom4 10490 fpwwe 10606 canthwelem 10610 pwfseqlem4 10622 ingru 10775 ltweuz 13933 elrest 17397 invfval 17728 isoval 17734 isofn 17744 zeroofn 17958 zerooval 17964 catcval 18069 isacs5lem 18511 isunit 20289 isrhm 20394 rhmfn 20415 rhmval 20416 rhmsubclem1 20601 2idlval 21168 pjfval 21622 psdmul 22060 fctop 22898 cctop 22900 ppttop 22901 epttop 22903 mretopd 22986 toponmre 22987 tgrest 23053 resttopon 23055 restco 23058 ordtbas2 23085 cnrest2 23180 cnpresti 23182 cnprest 23183 cnprest2 23184 cmpsublem 23293 cmpsub 23294 connsuba 23314 1stcrest 23347 subislly 23375 cldllycmp 23389 lly1stc 23390 txrest 23525 basqtop 23605 fbssfi 23731 trfbas2 23737 snfil 23758 fgcl 23772 trfil2 23781 cfinfil 23787 csdfil 23788 supfil 23789 zfbas 23790 fin1aufil 23826 fmfnfmlem3 23850 flimrest 23877 hauspwpwf1 23881 fclsrest 23918 tmdgsum2 23990 tsmsval2 24024 tsmssubm 24037 ustuqtop2 24137 restmetu 24465 isnmhm 24641 icopnfhmeo 24848 iccpnfhmeo 24850 xrhmeo 24851 pi1buni 24947 minveclem3b 25335 uniioombllem2 25491 uniioombllem6 25496 vitali 25521 ellimc2 25785 limcflf 25789 taylfvallem 26272 taylf 26275 tayl0 26276 taylpfval 26279 xrlimcnp 26885 lrrecse 27856 ewlkle 29540 upgrewlkle2 29541 wlk1walk 29574 maprnin 32661 ordtprsval 33915 ordtprsuni 33916 ordtrestNEW 33918 ordtrest2NEWlem 33919 ordtrest2NEW 33920 ordtconnlem1 33921 xrge0iifhmeo 33933 eulerpartgbij 34370 eulerpartlemmf 34373 eulerpart 34380 ballotlemfrc 34525 cvmsss2 35268 cvmcov2 35269 mvrsval 35499 mpstval 35529 mclsind 35564 mthmpps 35576 dfon2lem4 35781 brapply 35933 neibastop1 36354 filnetlem3 36375 weiunfr 36462 bj-restn0 37085 bj-restuni 37092 ptrest 37620 heiborlem3 37814 heibor 37822 polvalN 39906 fnwe2lem2 43047 harval3 43534 superficl 43563 ssficl 43565 trficl 43665 onfrALTlem5 44539 onfrALTlem5VD 44881 fourierdlem48 46159 fourierdlem49 46160 sge0resplit 46411 hoiqssbllem3 46629 rngcvalALTV 48257 rhmsubcALTVlem1 48273 ringcvalALTV 48281 invfn 49023 |
| Copyright terms: Public domain | W3C validator |