![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
inex1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | zfauscl 5300 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
3 | dfcleq 2725 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
4 | elin 3963 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | albii 1821 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
7 | 3, 6 | bitri 274 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
8 | 7 | exbii 1850 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
9 | 2, 8 | mpbir 230 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
10 | 9 | issetri 3490 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ∩ cin 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 |
This theorem is referenced by: inex2 5317 inex1g 5318 inuni 5342 onfr 6400 ssimaex 6973 exfo 7103 ofmres 7967 fipwuni 9417 fisn 9418 elfiun 9421 dffi3 9422 marypha1lem 9424 epfrs 9722 tcmin 9732 bnd2 9884 kmlem13 10153 brdom3 10519 brdom5 10520 brdom4 10521 fpwwe 10637 canthwelem 10641 pwfseqlem4 10653 ingru 10806 ltweuz 13922 elrest 17369 invfval 17702 isoval 17708 isofn 17718 zeroofn 17935 zerooval 17941 catcval 18046 isacs5lem 18494 isunit 20179 isrhm 20249 2idlval 20850 pjfval 21252 fctop 22498 cctop 22500 ppttop 22501 epttop 22503 mretopd 22587 toponmre 22588 tgrest 22654 resttopon 22656 restco 22659 ordtbas2 22686 cnrest2 22781 cnpresti 22783 cnprest 22784 cnprest2 22785 cmpsublem 22894 cmpsub 22895 connsuba 22915 1stcrest 22948 subislly 22976 cldllycmp 22990 lly1stc 22991 txrest 23126 basqtop 23206 fbssfi 23332 trfbas2 23338 snfil 23359 fgcl 23373 trfil2 23382 cfinfil 23388 csdfil 23389 supfil 23390 zfbas 23391 fin1aufil 23427 fmfnfmlem3 23451 flimrest 23478 hauspwpwf1 23482 fclsrest 23519 tmdgsum2 23591 tsmsval2 23625 tsmssubm 23638 ustuqtop2 23738 restmetu 24070 isnmhm 24254 icopnfhmeo 24450 iccpnfhmeo 24452 xrhmeo 24453 pi1buni 24547 minveclem3b 24936 uniioombllem2 25091 uniioombllem6 25096 vitali 25121 ellimc2 25385 limcflf 25389 taylfvallem 25861 taylf 25864 tayl0 25865 taylpfval 25868 xrlimcnp 26462 lrrecse 27415 ewlkle 28851 upgrewlkle2 28852 wlk1walk 28885 maprnin 31943 ordtprsval 32886 ordtprsuni 32887 ordtrestNEW 32889 ordtrest2NEWlem 32890 ordtrest2NEW 32891 ordtconnlem1 32892 xrge0iifhmeo 32904 eulerpartgbij 33359 eulerpartlemmf 33362 eulerpart 33369 ballotlemfrc 33513 cvmsss2 34253 cvmcov2 34254 mvrsval 34484 mpstval 34514 mclsind 34549 mthmpps 34561 dfon2lem4 34746 brapply 34898 neibastop1 35232 filnetlem3 35253 bj-restn0 35959 bj-restuni 35966 ptrest 36475 heiborlem3 36669 heibor 36677 polvalN 38764 fnwe2lem2 41778 harval3 42274 superficl 42303 ssficl 42305 trficl 42405 onfrALTlem5 43288 onfrALTlem5VD 43631 fourierdlem48 44856 fourierdlem49 44857 sge0resplit 45108 hoiqssbllem3 45326 rhmfn 46705 rhmval 46706 rngcvalALTV 46812 ringcvalALTV 46858 rhmsubclem1 46937 rhmsubcALTVlem1 46955 |
Copyright terms: Public domain | W3C validator |