| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| inex1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | zfauscl 5237 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 3 | dfcleq 2722 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
| 4 | elin 3919 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 6 | 5 | albii 1819 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 8 | 7 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 9 | 2, 8 | mpbir 231 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
| 10 | 9 | issetri 3455 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 |
| This theorem is referenced by: inex2 5257 inex1g 5258 inuni 5289 onfr 6346 ssimaex 6908 exfo 7039 ofmres 7919 fipwuni 9316 fisn 9317 elfiun 9320 dffi3 9321 marypha1lem 9323 epfrs 9627 tcmin 9637 bnd2 9789 kmlem13 10057 brdom3 10422 brdom5 10423 brdom4 10424 fpwwe 10540 canthwelem 10544 pwfseqlem4 10556 ingru 10709 ltweuz 13868 elrest 17331 invfval 17666 isoval 17672 isofn 17682 zeroofn 17896 zerooval 17902 catcval 18007 isacs5lem 18451 isunit 20258 isrhm 20363 rhmfn 20384 rhmval 20385 rhmsubclem1 20570 2idlval 21158 pjfval 21613 psdmul 22051 fctop 22889 cctop 22891 ppttop 22892 epttop 22894 mretopd 22977 toponmre 22978 tgrest 23044 resttopon 23046 restco 23049 ordtbas2 23076 cnrest2 23171 cnpresti 23173 cnprest 23174 cnprest2 23175 cmpsublem 23284 cmpsub 23285 connsuba 23305 1stcrest 23338 subislly 23366 cldllycmp 23380 lly1stc 23381 txrest 23516 basqtop 23596 fbssfi 23722 trfbas2 23728 snfil 23749 fgcl 23763 trfil2 23772 cfinfil 23778 csdfil 23779 supfil 23780 zfbas 23781 fin1aufil 23817 fmfnfmlem3 23841 flimrest 23868 hauspwpwf1 23872 fclsrest 23909 tmdgsum2 23981 tsmsval2 24015 tsmssubm 24028 ustuqtop2 24128 restmetu 24456 isnmhm 24632 icopnfhmeo 24839 iccpnfhmeo 24841 xrhmeo 24842 pi1buni 24938 minveclem3b 25326 uniioombllem2 25482 uniioombllem6 25487 vitali 25512 ellimc2 25776 limcflf 25780 taylfvallem 26263 taylf 26266 tayl0 26267 taylpfval 26270 xrlimcnp 26876 lrrecse 27854 ewlkle 29551 upgrewlkle2 29552 wlk1walk 29584 maprnin 32674 ordtprsval 33885 ordtprsuni 33886 ordtrestNEW 33888 ordtrest2NEWlem 33889 ordtrest2NEW 33890 ordtconnlem1 33891 xrge0iifhmeo 33903 eulerpartgbij 34340 eulerpartlemmf 34343 eulerpart 34350 ballotlemfrc 34495 cvmsss2 35251 cvmcov2 35252 mvrsval 35482 mpstval 35512 mclsind 35547 mthmpps 35559 dfon2lem4 35764 brapply 35916 neibastop1 36337 filnetlem3 36358 weiunfr 36445 bj-restn0 37068 bj-restuni 37075 ptrest 37603 heiborlem3 37797 heibor 37805 polvalN 39888 fnwe2lem2 43028 harval3 43515 superficl 43544 ssficl 43546 trficl 43646 onfrALTlem5 44520 onfrALTlem5VD 44862 fourierdlem48 46139 fourierdlem49 46140 sge0resplit 46391 hoiqssbllem3 46609 rngcvalALTV 48253 rhmsubcALTVlem1 48269 ringcvalALTV 48277 invfn 49019 |
| Copyright terms: Public domain | W3C validator |