| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| inex1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | zfauscl 5234 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 3 | dfcleq 2724 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
| 4 | elin 3913 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 6 | 5 | albii 1820 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 8 | 7 | exbii 1849 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 9 | 2, 8 | mpbir 231 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
| 10 | 9 | issetri 3455 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 |
| This theorem is referenced by: inex2 5254 inex1g 5255 inuni 5286 onfr 6345 ssimaex 6907 exfo 7038 ofmres 7916 fipwuni 9310 fisn 9311 elfiun 9314 dffi3 9315 marypha1lem 9317 epfrs 9621 tcmin 9629 bnd2 9786 kmlem13 10054 brdom3 10419 brdom5 10420 brdom4 10421 fpwwe 10537 canthwelem 10541 pwfseqlem4 10553 ingru 10706 ltweuz 13868 elrest 17331 invfval 17666 isoval 17672 isofn 17682 zeroofn 17896 zerooval 17902 catcval 18007 isacs5lem 18451 isunit 20291 isrhm 20396 rhmfn 20414 rhmval 20415 rhmsubclem1 20600 2idlval 21188 pjfval 21643 psdmul 22081 fctop 22919 cctop 22921 ppttop 22922 epttop 22924 mretopd 23007 toponmre 23008 tgrest 23074 resttopon 23076 restco 23079 ordtbas2 23106 cnrest2 23201 cnpresti 23203 cnprest 23204 cnprest2 23205 cmpsublem 23314 cmpsub 23315 connsuba 23335 1stcrest 23368 subislly 23396 cldllycmp 23410 lly1stc 23411 txrest 23546 basqtop 23626 fbssfi 23752 trfbas2 23758 snfil 23779 fgcl 23793 trfil2 23802 cfinfil 23808 csdfil 23809 supfil 23810 zfbas 23811 fin1aufil 23847 fmfnfmlem3 23871 flimrest 23898 hauspwpwf1 23902 fclsrest 23939 tmdgsum2 24011 tsmsval2 24045 tsmssubm 24058 ustuqtop2 24157 restmetu 24485 isnmhm 24661 icopnfhmeo 24868 iccpnfhmeo 24870 xrhmeo 24871 pi1buni 24967 minveclem3b 25355 uniioombllem2 25511 uniioombllem6 25516 vitali 25541 ellimc2 25805 limcflf 25809 taylfvallem 26292 taylf 26295 tayl0 26296 taylpfval 26299 xrlimcnp 26905 lrrecse 27885 ewlkle 29584 upgrewlkle2 29585 wlk1walk 29617 maprnin 32714 ordtprsval 33931 ordtprsuni 33932 ordtrestNEW 33934 ordtrest2NEWlem 33935 ordtrest2NEW 33936 ordtconnlem1 33937 xrge0iifhmeo 33949 eulerpartgbij 34385 eulerpartlemmf 34388 eulerpart 34395 ballotlemfrc 34540 cvmsss2 35318 cvmcov2 35319 mvrsval 35549 mpstval 35579 mclsind 35614 mthmpps 35626 dfon2lem4 35828 brapply 35980 neibastop1 36403 filnetlem3 36424 weiunfr 36511 bj-restn0 37134 bj-restuni 37141 ptrest 37669 heiborlem3 37863 heibor 37871 polvalN 40014 fnwe2lem2 43154 harval3 43641 superficl 43670 ssficl 43672 trficl 43772 onfrALTlem5 44645 onfrALTlem5VD 44987 fourierdlem48 46262 fourierdlem49 46263 sge0resplit 46514 hoiqssbllem3 46732 rngcvalALTV 48375 rhmsubcALTVlem1 48391 ringcvalALTV 48399 invfn 49141 |
| Copyright terms: Public domain | W3C validator |