![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
inex1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | zfauscl 5292 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
3 | dfcleq 2717 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
4 | elin 3957 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | albii 1813 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
8 | 7 | exbii 1842 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
9 | 2, 8 | mpbir 230 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
10 | 9 | issetri 3483 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3466 ∩ cin 3940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3948 |
This theorem is referenced by: inex2 5309 inex1g 5310 inuni 5334 onfr 6394 ssimaex 6967 exfo 7097 ofmres 7965 fipwuni 9418 fisn 9419 elfiun 9422 dffi3 9423 marypha1lem 9425 epfrs 9723 tcmin 9733 bnd2 9885 kmlem13 10154 brdom3 10520 brdom5 10521 brdom4 10522 fpwwe 10638 canthwelem 10642 pwfseqlem4 10654 ingru 10807 ltweuz 13927 elrest 17378 invfval 17711 isoval 17717 isofn 17727 zeroofn 17947 zerooval 17953 catcval 18058 isacs5lem 18506 isunit 20271 isrhm 20376 rhmfn 20397 rhmval 20398 rhmsubclem1 20577 2idlval 21104 pjfval 21590 fctop 22851 cctop 22853 ppttop 22854 epttop 22856 mretopd 22940 toponmre 22941 tgrest 23007 resttopon 23009 restco 23012 ordtbas2 23039 cnrest2 23134 cnpresti 23136 cnprest 23137 cnprest2 23138 cmpsublem 23247 cmpsub 23248 connsuba 23268 1stcrest 23301 subislly 23329 cldllycmp 23343 lly1stc 23344 txrest 23479 basqtop 23559 fbssfi 23685 trfbas2 23691 snfil 23712 fgcl 23726 trfil2 23735 cfinfil 23741 csdfil 23742 supfil 23743 zfbas 23744 fin1aufil 23780 fmfnfmlem3 23804 flimrest 23831 hauspwpwf1 23835 fclsrest 23872 tmdgsum2 23944 tsmsval2 23978 tsmssubm 23991 ustuqtop2 24091 restmetu 24423 isnmhm 24607 icopnfhmeo 24812 iccpnfhmeo 24814 xrhmeo 24815 pi1buni 24911 minveclem3b 25300 uniioombllem2 25456 uniioombllem6 25461 vitali 25486 ellimc2 25750 limcflf 25754 taylfvallem 26235 taylf 26238 tayl0 26239 taylpfval 26242 xrlimcnp 26841 lrrecse 27800 ewlkle 29357 upgrewlkle2 29358 wlk1walk 29391 maprnin 32451 ordtprsval 33418 ordtprsuni 33419 ordtrestNEW 33421 ordtrest2NEWlem 33422 ordtrest2NEW 33423 ordtconnlem1 33424 xrge0iifhmeo 33436 eulerpartgbij 33891 eulerpartlemmf 33894 eulerpart 33901 ballotlemfrc 34045 cvmsss2 34783 cvmcov2 34784 mvrsval 35014 mpstval 35044 mclsind 35079 mthmpps 35091 dfon2lem4 35281 brapply 35433 neibastop1 35745 filnetlem3 35766 bj-restn0 36472 bj-restuni 36479 ptrest 36991 heiborlem3 37185 heibor 37193 polvalN 39280 fnwe2lem2 42345 harval3 42839 superficl 42868 ssficl 42870 trficl 42970 onfrALTlem5 43853 onfrALTlem5VD 44196 fourierdlem48 45416 fourierdlem49 45417 sge0resplit 45668 hoiqssbllem3 45886 rngcvalALTV 47189 rhmsubcALTVlem1 47205 ringcvalALTV 47213 |
Copyright terms: Public domain | W3C validator |