![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
inex1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | zfauscl 5319 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
3 | dfcleq 2733 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
4 | elin 3992 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | albii 1817 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
8 | 7 | exbii 1846 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
9 | 2, 8 | mpbir 231 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
10 | 9 | issetri 3507 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 |
This theorem is referenced by: inex2 5336 inex1g 5337 inuni 5368 onfr 6434 ssimaex 7007 exfo 7139 ofmres 8025 fipwuni 9495 fisn 9496 elfiun 9499 dffi3 9500 marypha1lem 9502 epfrs 9800 tcmin 9810 bnd2 9962 kmlem13 10232 brdom3 10597 brdom5 10598 brdom4 10599 fpwwe 10715 canthwelem 10719 pwfseqlem4 10731 ingru 10884 ltweuz 14012 elrest 17487 invfval 17820 isoval 17826 isofn 17836 zeroofn 18056 zerooval 18062 catcval 18167 isacs5lem 18615 isunit 20399 isrhm 20504 rhmfn 20525 rhmval 20526 rhmsubclem1 20707 2idlval 21284 pjfval 21749 psdmul 22193 fctop 23032 cctop 23034 ppttop 23035 epttop 23037 mretopd 23121 toponmre 23122 tgrest 23188 resttopon 23190 restco 23193 ordtbas2 23220 cnrest2 23315 cnpresti 23317 cnprest 23318 cnprest2 23319 cmpsublem 23428 cmpsub 23429 connsuba 23449 1stcrest 23482 subislly 23510 cldllycmp 23524 lly1stc 23525 txrest 23660 basqtop 23740 fbssfi 23866 trfbas2 23872 snfil 23893 fgcl 23907 trfil2 23916 cfinfil 23922 csdfil 23923 supfil 23924 zfbas 23925 fin1aufil 23961 fmfnfmlem3 23985 flimrest 24012 hauspwpwf1 24016 fclsrest 24053 tmdgsum2 24125 tsmsval2 24159 tsmssubm 24172 ustuqtop2 24272 restmetu 24604 isnmhm 24788 icopnfhmeo 24993 iccpnfhmeo 24995 xrhmeo 24996 pi1buni 25092 minveclem3b 25481 uniioombllem2 25637 uniioombllem6 25642 vitali 25667 ellimc2 25932 limcflf 25936 taylfvallem 26417 taylf 26420 tayl0 26421 taylpfval 26424 xrlimcnp 27029 lrrecse 27993 ewlkle 29641 upgrewlkle2 29642 wlk1walk 29675 maprnin 32745 ordtprsval 33864 ordtprsuni 33865 ordtrestNEW 33867 ordtrest2NEWlem 33868 ordtrest2NEW 33869 ordtconnlem1 33870 xrge0iifhmeo 33882 eulerpartgbij 34337 eulerpartlemmf 34340 eulerpart 34347 ballotlemfrc 34491 cvmsss2 35242 cvmcov2 35243 mvrsval 35473 mpstval 35503 mclsind 35538 mthmpps 35550 dfon2lem4 35750 brapply 35902 neibastop1 36325 filnetlem3 36346 weiunfr 36433 bj-restn0 37056 bj-restuni 37063 ptrest 37579 heiborlem3 37773 heibor 37781 polvalN 39862 fnwe2lem2 43008 harval3 43500 superficl 43529 ssficl 43531 trficl 43631 onfrALTlem5 44513 onfrALTlem5VD 44856 fourierdlem48 46075 fourierdlem49 46076 sge0resplit 46327 hoiqssbllem3 46545 rngcvalALTV 47988 rhmsubcALTVlem1 48004 ringcvalALTV 48012 |
Copyright terms: Public domain | W3C validator |