![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex1 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
inex1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | zfauscl 5303 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
3 | dfcleq 2727 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
4 | elin 3978 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | bibi2i 337 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | albii 1815 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
7 | 3, 6 | bitri 275 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
8 | 7 | exbii 1844 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
9 | 2, 8 | mpbir 231 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
10 | 9 | issetri 3496 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1534 = wceq 1536 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 ∩ cin 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 |
This theorem is referenced by: inex2 5323 inex1g 5324 inuni 5355 onfr 6424 ssimaex 6993 exfo 7124 ofmres 8007 fipwuni 9463 fisn 9464 elfiun 9467 dffi3 9468 marypha1lem 9470 epfrs 9768 tcmin 9778 bnd2 9930 kmlem13 10200 brdom3 10565 brdom5 10566 brdom4 10567 fpwwe 10683 canthwelem 10687 pwfseqlem4 10699 ingru 10852 ltweuz 13998 elrest 17473 invfval 17806 isoval 17812 isofn 17822 zeroofn 18042 zerooval 18048 catcval 18153 isacs5lem 18602 isunit 20389 isrhm 20494 rhmfn 20515 rhmval 20516 rhmsubclem1 20701 2idlval 21278 pjfval 21743 psdmul 22187 fctop 23026 cctop 23028 ppttop 23029 epttop 23031 mretopd 23115 toponmre 23116 tgrest 23182 resttopon 23184 restco 23187 ordtbas2 23214 cnrest2 23309 cnpresti 23311 cnprest 23312 cnprest2 23313 cmpsublem 23422 cmpsub 23423 connsuba 23443 1stcrest 23476 subislly 23504 cldllycmp 23518 lly1stc 23519 txrest 23654 basqtop 23734 fbssfi 23860 trfbas2 23866 snfil 23887 fgcl 23901 trfil2 23910 cfinfil 23916 csdfil 23917 supfil 23918 zfbas 23919 fin1aufil 23955 fmfnfmlem3 23979 flimrest 24006 hauspwpwf1 24010 fclsrest 24047 tmdgsum2 24119 tsmsval2 24153 tsmssubm 24166 ustuqtop2 24266 restmetu 24598 isnmhm 24782 icopnfhmeo 24987 iccpnfhmeo 24989 xrhmeo 24990 pi1buni 25086 minveclem3b 25475 uniioombllem2 25631 uniioombllem6 25636 vitali 25661 ellimc2 25926 limcflf 25930 taylfvallem 26413 taylf 26416 tayl0 26417 taylpfval 26420 xrlimcnp 27025 lrrecse 27989 ewlkle 29637 upgrewlkle2 29638 wlk1walk 29671 maprnin 32748 ordtprsval 33878 ordtprsuni 33879 ordtrestNEW 33881 ordtrest2NEWlem 33882 ordtrest2NEW 33883 ordtconnlem1 33884 xrge0iifhmeo 33896 eulerpartgbij 34353 eulerpartlemmf 34356 eulerpart 34363 ballotlemfrc 34507 cvmsss2 35258 cvmcov2 35259 mvrsval 35489 mpstval 35519 mclsind 35554 mthmpps 35566 dfon2lem4 35767 brapply 35919 neibastop1 36341 filnetlem3 36362 weiunfr 36449 bj-restn0 37072 bj-restuni 37079 ptrest 37605 heiborlem3 37799 heibor 37807 polvalN 39887 fnwe2lem2 43039 harval3 43527 superficl 43556 ssficl 43558 trficl 43658 onfrALTlem5 44539 onfrALTlem5VD 44882 fourierdlem48 46109 fourierdlem49 46110 sge0resplit 46361 hoiqssbllem3 46579 rngcvalALTV 48108 rhmsubcALTVlem1 48124 ringcvalALTV 48132 |
Copyright terms: Public domain | W3C validator |