| Step | Hyp | Ref
| Expression |
| 1 | | axacndlem5 10630 |
. . . 4
⊢
∃𝑥∀𝑦∀𝑣(∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |
| 2 | | nfnae 2439 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑧 𝑧 = 𝑥 |
| 3 | | nfnae 2439 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑧 𝑧 = 𝑦 |
| 4 | | nfnae 2439 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑧 𝑧 = 𝑤 |
| 5 | 2, 3, 4 | nf3an 1901 |
. . . . 5
⊢
Ⅎ𝑥(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) |
| 6 | | nfnae 2439 |
. . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑧 𝑧 = 𝑥 |
| 7 | | nfnae 2439 |
. . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑧 𝑧 = 𝑦 |
| 8 | | nfnae 2439 |
. . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑧 𝑧 = 𝑤 |
| 9 | 6, 7, 8 | nf3an 1901 |
. . . . . 6
⊢
Ⅎ𝑦(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) |
| 10 | | nfnae 2439 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑥 |
| 11 | | nfnae 2439 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑦 |
| 12 | | nfnae 2439 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑤 |
| 13 | 10, 11, 12 | nf3an 1901 |
. . . . . . 7
⊢
Ⅎ𝑧(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) |
| 14 | | nfcvf 2926 |
. . . . . . . . . . . 12
⊢ (¬
∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧𝑦) |
| 15 | 14 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧𝑦) |
| 16 | | nfcvd 2900 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧𝑣) |
| 17 | 15, 16 | nfeld 2911 |
. . . . . . . . . 10
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧 𝑦 ∈ 𝑣) |
| 18 | | nfcvf 2926 |
. . . . . . . . . . . 12
⊢ (¬
∀𝑧 𝑧 = 𝑤 → Ⅎ𝑧𝑤) |
| 19 | 18 | 3ad2ant3 1135 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧𝑤) |
| 20 | 16, 19 | nfeld 2911 |
. . . . . . . . . 10
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧 𝑣 ∈ 𝑤) |
| 21 | 17, 20 | nfand 1897 |
. . . . . . . . 9
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤)) |
| 22 | 5, 21 | nfald 2329 |
. . . . . . . 8
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤)) |
| 23 | | nfnae 2439 |
. . . . . . . . . 10
⊢
Ⅎ𝑤 ¬
∀𝑧 𝑧 = 𝑥 |
| 24 | | nfnae 2439 |
. . . . . . . . . 10
⊢
Ⅎ𝑤 ¬
∀𝑧 𝑧 = 𝑦 |
| 25 | | nfnae 2439 |
. . . . . . . . . 10
⊢
Ⅎ𝑤 ¬
∀𝑧 𝑧 = 𝑤 |
| 26 | 23, 24, 25 | nf3an 1901 |
. . . . . . . . 9
⊢
Ⅎ𝑤(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) |
| 27 | 15, 19 | nfeld 2911 |
. . . . . . . . . . . . . 14
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧 𝑦 ∈ 𝑤) |
| 28 | | nfcvf 2926 |
. . . . . . . . . . . . . . . 16
⊢ (¬
∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧𝑥) |
| 29 | 28 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧𝑥) |
| 30 | 19, 29 | nfeld 2911 |
. . . . . . . . . . . . . 14
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧 𝑤 ∈ 𝑥) |
| 31 | 27, 30 | nfand 1897 |
. . . . . . . . . . . . 13
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) |
| 32 | 21, 31 | nfand 1897 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥))) |
| 33 | 26, 32 | nfexd 2330 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥))) |
| 34 | 15, 19 | nfeqd 2910 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧 𝑦 = 𝑤) |
| 35 | 33, 34 | nfbid 1902 |
. . . . . . . . . 10
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |
| 36 | 9, 35 | nfald 2329 |
. . . . . . . . 9
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |
| 37 | 26, 36 | nfexd 2330 |
. . . . . . . 8
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |
| 38 | 22, 37 | nfimd 1894 |
. . . . . . 7
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧(∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 39 | | nfcvd 2900 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑥𝑣) |
| 40 | | nfcvf2 2927 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑧 𝑧 = 𝑥 → Ⅎ𝑥𝑧) |
| 41 | 40 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑥𝑧) |
| 42 | 39, 41 | nfeqd 2910 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑥 𝑣 = 𝑧) |
| 43 | 5, 42 | nfan1 2201 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) |
| 44 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → 𝑣 = 𝑧) |
| 45 | 44 | eleq2d 2821 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (𝑦 ∈ 𝑣 ↔ 𝑦 ∈ 𝑧)) |
| 46 | 44 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (𝑣 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤)) |
| 47 | 45, 46 | anbi12d 632 |
. . . . . . . . . 10
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → ((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ↔ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) |
| 48 | 43, 47 | albid 2223 |
. . . . . . . . 9
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ↔ ∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) |
| 49 | | nfcvd 2900 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑤𝑣) |
| 50 | | nfcvf2 2927 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑧 𝑧 = 𝑤 → Ⅎ𝑤𝑧) |
| 51 | 50 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑤𝑧) |
| 52 | 49, 51 | nfeqd 2910 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑤 𝑣 = 𝑧) |
| 53 | 26, 52 | nfan1 2201 |
. . . . . . . . . 10
⊢
Ⅎ𝑤((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) |
| 54 | | nfcvd 2900 |
. . . . . . . . . . . . 13
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑦𝑣) |
| 55 | | nfcvf2 2927 |
. . . . . . . . . . . . . 14
⊢ (¬
∀𝑧 𝑧 = 𝑦 → Ⅎ𝑦𝑧) |
| 56 | 55 | 3ad2ant2 1134 |
. . . . . . . . . . . . 13
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑦𝑧) |
| 57 | 54, 56 | nfeqd 2910 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑦 𝑣 = 𝑧) |
| 58 | 9, 57 | nfan1 2201 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) |
| 59 | 47 | anbi1d 631 |
. . . . . . . . . . . . 13
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)))) |
| 60 | 53, 59 | exbid 2224 |
. . . . . . . . . . . 12
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ ∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)))) |
| 61 | 60 | bibi1d 343 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → ((∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤) ↔ (∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 62 | 58, 61 | albid 2223 |
. . . . . . . . . 10
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤) ↔ ∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 63 | 53, 62 | exbid 2224 |
. . . . . . . . 9
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤) ↔ ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 64 | 48, 63 | imbi12d 344 |
. . . . . . . 8
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → ((∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
| 65 | 64 | ex 412 |
. . . . . . 7
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → (𝑣 = 𝑧 → ((∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))))) |
| 66 | 13, 38, 65 | cbvald 2412 |
. . . . . 6
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → (∀𝑣(∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
| 67 | 9, 66 | albid 2223 |
. . . . 5
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → (∀𝑦∀𝑣(∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
| 68 | 5, 67 | exbid 2224 |
. . . 4
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → (∃𝑥∀𝑦∀𝑣(∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
| 69 | 1, 68 | mpbii 233 |
. . 3
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 70 | 69 | 3exp 1119 |
. 2
⊢ (¬
∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (¬ ∀𝑧 𝑧 = 𝑤 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))))) |
| 71 | | axacndlem2 10627 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 72 | 71 | aecoms 2433 |
. 2
⊢
(∀𝑧 𝑧 = 𝑥 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 73 | | axacndlem3 10628 |
. . 3
⊢
(∀𝑦 𝑦 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 74 | 73 | aecoms 2433 |
. 2
⊢
(∀𝑧 𝑧 = 𝑦 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 75 | | nfae 2438 |
. . . 4
⊢
Ⅎ𝑦∀𝑧 𝑧 = 𝑤 |
| 76 | | simpr 484 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → 𝑧 ∈ 𝑤) |
| 77 | 76 | alimi 1811 |
. . . . . 6
⊢
(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∀𝑥 𝑧 ∈ 𝑤) |
| 78 | | nd3 10608 |
. . . . . . 7
⊢
(∀𝑧 𝑧 = 𝑤 → ¬ ∀𝑥 𝑧 ∈ 𝑤) |
| 79 | 78 | pm2.21d 121 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑤 → (∀𝑥 𝑧 ∈ 𝑤 → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 80 | 77, 79 | syl5 34 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑤 → (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 81 | 80 | axc4i 2323 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑤 → ∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 82 | 75, 81 | alrimi 2214 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑤 → ∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 83 | 82 | 19.8ad 2183 |
. 2
⊢
(∀𝑧 𝑧 = 𝑤 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
| 84 | 70, 72, 74, 83 | pm2.61iii 185 |
1
⊢
∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |