Step | Hyp | Ref
| Expression |
1 | | axacndlem5 10351 |
. . . 4
⊢
∃𝑥∀𝑦∀𝑣(∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |
2 | | nfnae 2435 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑧 𝑧 = 𝑥 |
3 | | nfnae 2435 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑧 𝑧 = 𝑦 |
4 | | nfnae 2435 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑧 𝑧 = 𝑤 |
5 | 2, 3, 4 | nf3an 1907 |
. . . . 5
⊢
Ⅎ𝑥(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) |
6 | | nfnae 2435 |
. . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑧 𝑧 = 𝑥 |
7 | | nfnae 2435 |
. . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑧 𝑧 = 𝑦 |
8 | | nfnae 2435 |
. . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑧 𝑧 = 𝑤 |
9 | 6, 7, 8 | nf3an 1907 |
. . . . . 6
⊢
Ⅎ𝑦(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) |
10 | | nfnae 2435 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑥 |
11 | | nfnae 2435 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑦 |
12 | | nfnae 2435 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑤 |
13 | 10, 11, 12 | nf3an 1907 |
. . . . . . 7
⊢
Ⅎ𝑧(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) |
14 | | nfcvf 2937 |
. . . . . . . . . . . 12
⊢ (¬
∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧𝑦) |
15 | 14 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧𝑦) |
16 | | nfcvd 2909 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧𝑣) |
17 | 15, 16 | nfeld 2919 |
. . . . . . . . . 10
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧 𝑦 ∈ 𝑣) |
18 | | nfcvf 2937 |
. . . . . . . . . . . 12
⊢ (¬
∀𝑧 𝑧 = 𝑤 → Ⅎ𝑧𝑤) |
19 | 18 | 3ad2ant3 1133 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧𝑤) |
20 | 16, 19 | nfeld 2919 |
. . . . . . . . . 10
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧 𝑣 ∈ 𝑤) |
21 | 17, 20 | nfand 1903 |
. . . . . . . . 9
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤)) |
22 | 5, 21 | nfald 2325 |
. . . . . . . 8
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤)) |
23 | | nfnae 2435 |
. . . . . . . . . 10
⊢
Ⅎ𝑤 ¬
∀𝑧 𝑧 = 𝑥 |
24 | | nfnae 2435 |
. . . . . . . . . 10
⊢
Ⅎ𝑤 ¬
∀𝑧 𝑧 = 𝑦 |
25 | | nfnae 2435 |
. . . . . . . . . 10
⊢
Ⅎ𝑤 ¬
∀𝑧 𝑧 = 𝑤 |
26 | 23, 24, 25 | nf3an 1907 |
. . . . . . . . 9
⊢
Ⅎ𝑤(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) |
27 | 15, 19 | nfeld 2919 |
. . . . . . . . . . . . . 14
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧 𝑦 ∈ 𝑤) |
28 | | nfcvf 2937 |
. . . . . . . . . . . . . . . 16
⊢ (¬
∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧𝑥) |
29 | 28 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧𝑥) |
30 | 19, 29 | nfeld 2919 |
. . . . . . . . . . . . . 14
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧 𝑤 ∈ 𝑥) |
31 | 27, 30 | nfand 1903 |
. . . . . . . . . . . . 13
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) |
32 | 21, 31 | nfand 1903 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥))) |
33 | 26, 32 | nfexd 2326 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥))) |
34 | 15, 19 | nfeqd 2918 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧 𝑦 = 𝑤) |
35 | 33, 34 | nfbid 1908 |
. . . . . . . . . 10
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |
36 | 9, 35 | nfald 2325 |
. . . . . . . . 9
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |
37 | 26, 36 | nfexd 2326 |
. . . . . . . 8
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |
38 | 22, 37 | nfimd 1900 |
. . . . . . 7
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑧(∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
39 | | nfcvd 2909 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑥𝑣) |
40 | | nfcvf2 2938 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑧 𝑧 = 𝑥 → Ⅎ𝑥𝑧) |
41 | 40 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑥𝑧) |
42 | 39, 41 | nfeqd 2918 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑥 𝑣 = 𝑧) |
43 | 5, 42 | nfan1 2196 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) |
44 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → 𝑣 = 𝑧) |
45 | 44 | eleq2d 2825 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (𝑦 ∈ 𝑣 ↔ 𝑦 ∈ 𝑧)) |
46 | 44 | eleq1d 2824 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (𝑣 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤)) |
47 | 45, 46 | anbi12d 630 |
. . . . . . . . . 10
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → ((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ↔ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) |
48 | 43, 47 | albid 2218 |
. . . . . . . . 9
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ↔ ∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) |
49 | | nfcvd 2909 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑤𝑣) |
50 | | nfcvf2 2938 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑧 𝑧 = 𝑤 → Ⅎ𝑤𝑧) |
51 | 50 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑤𝑧) |
52 | 49, 51 | nfeqd 2918 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑤 𝑣 = 𝑧) |
53 | 26, 52 | nfan1 2196 |
. . . . . . . . . 10
⊢
Ⅎ𝑤((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) |
54 | | nfcvd 2909 |
. . . . . . . . . . . . 13
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑦𝑣) |
55 | | nfcvf2 2938 |
. . . . . . . . . . . . . 14
⊢ (¬
∀𝑧 𝑧 = 𝑦 → Ⅎ𝑦𝑧) |
56 | 55 | 3ad2ant2 1132 |
. . . . . . . . . . . . 13
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑦𝑧) |
57 | 54, 56 | nfeqd 2918 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → Ⅎ𝑦 𝑣 = 𝑧) |
58 | 9, 57 | nfan1 2196 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) |
59 | 47 | anbi1d 629 |
. . . . . . . . . . . . 13
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)))) |
60 | 53, 59 | exbid 2219 |
. . . . . . . . . . . 12
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ ∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)))) |
61 | 60 | bibi1d 343 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → ((∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤) ↔ (∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
62 | 58, 61 | albid 2218 |
. . . . . . . . . 10
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤) ↔ ∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
63 | 53, 62 | exbid 2219 |
. . . . . . . . 9
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → (∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤) ↔ ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
64 | 48, 63 | imbi12d 344 |
. . . . . . . 8
⊢ (((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) ∧ 𝑣 = 𝑧) → ((∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
65 | 64 | ex 412 |
. . . . . . 7
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → (𝑣 = 𝑧 → ((∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))))) |
66 | 13, 38, 65 | cbvald 2408 |
. . . . . 6
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → (∀𝑣(∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
67 | 9, 66 | albid 2218 |
. . . . 5
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → (∀𝑦∀𝑣(∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
68 | 5, 67 | exbid 2219 |
. . . 4
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → (∃𝑥∀𝑦∀𝑣(∀𝑥(𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
69 | 1, 68 | mpbii 232 |
. . 3
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦 ∧ ¬ ∀𝑧 𝑧 = 𝑤) → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
70 | 69 | 3exp 1117 |
. 2
⊢ (¬
∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (¬ ∀𝑧 𝑧 = 𝑤 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))))) |
71 | | axacndlem2 10348 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
72 | 71 | aecoms 2429 |
. 2
⊢
(∀𝑧 𝑧 = 𝑥 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
73 | | axacndlem3 10349 |
. . 3
⊢
(∀𝑦 𝑦 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
74 | 73 | aecoms 2429 |
. 2
⊢
(∀𝑧 𝑧 = 𝑦 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
75 | | nfae 2434 |
. . . 4
⊢
Ⅎ𝑦∀𝑧 𝑧 = 𝑤 |
76 | | simpr 484 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → 𝑧 ∈ 𝑤) |
77 | 76 | alimi 1817 |
. . . . . 6
⊢
(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∀𝑥 𝑧 ∈ 𝑤) |
78 | | nd3 10329 |
. . . . . . 7
⊢
(∀𝑧 𝑧 = 𝑤 → ¬ ∀𝑥 𝑧 ∈ 𝑤) |
79 | 78 | pm2.21d 121 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑤 → (∀𝑥 𝑧 ∈ 𝑤 → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
80 | 77, 79 | syl5 34 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑤 → (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
81 | 80 | axc4i 2319 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑤 → ∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
82 | 75, 81 | alrimi 2209 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑤 → ∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
83 | 82 | 19.8ad 2178 |
. 2
⊢
(∀𝑧 𝑧 = 𝑤 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
84 | 70, 72, 74, 83 | pm2.61iii 185 |
1
⊢
∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |