MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndrep Structured version   Visualization version   GIF version

Theorem zfcndrep 10025
Description: Axiom of Replacement ax-rep 5154, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2379. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
zfcndrep (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem zfcndrep
StepHypRef Expression
1 nfe1 2151 . . . . . 6 𝑦𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦)
2 nfv 1915 . . . . . . . 8 𝑦 𝑧𝑤
3 nfv 1915 . . . . . . . . . 10 𝑦 𝑤𝑥
4 nfa1 2152 . . . . . . . . . 10 𝑦𝑦𝑦𝜑
53, 4nfan 1900 . . . . . . . . 9 𝑦(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)
65nfex 2332 . . . . . . . 8 𝑦𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)
72, 6nfbi 1904 . . . . . . 7 𝑦(𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑))
87nfal 2331 . . . . . 6 𝑦𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑))
91, 8nfim 1897 . . . . 5 𝑦(∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)))
109nfex 2332 . . . 4 𝑦𝑤(∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)))
11 elequ2 2126 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑤𝑦𝑤𝑥))
1211anbi1d 632 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑤𝑦 ∧ ∀𝑦𝑦𝜑) ↔ (𝑤𝑥 ∧ ∀𝑦𝑦𝜑)))
1312exbidv 1922 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑤(𝑤𝑦 ∧ ∀𝑦𝑦𝜑) ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)))
1413bibi2d 346 . . . . . . 7 (𝑦 = 𝑥 → ((𝑧𝑤 ↔ ∃𝑤(𝑤𝑦 ∧ ∀𝑦𝑦𝜑)) ↔ (𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑))))
1514albidv 1921 . . . . . 6 (𝑦 = 𝑥 → (∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑦 ∧ ∀𝑦𝑦𝜑)) ↔ ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑))))
1615imbi2d 344 . . . . 5 (𝑦 = 𝑥 → ((∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑦 ∧ ∀𝑦𝑦𝜑))) ↔ (∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)))))
1716exbidv 1922 . . . 4 (𝑦 = 𝑥 → (∃𝑤(∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑦 ∧ ∀𝑦𝑦𝜑))) ↔ ∃𝑤(∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)))))
18 axrepnd 10005 . . . . 5 𝑤(∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑤 ↔ ∃𝑤(∀𝑧 𝑤𝑦 ∧ ∀𝑦𝑦𝜑)))
19 19.3v 1986 . . . . . . . . 9 (∀𝑦 𝑧𝑤𝑧𝑤)
20 19.3v 1986 . . . . . . . . . . 11 (∀𝑧 𝑤𝑦𝑤𝑦)
2120anbi1i 626 . . . . . . . . . 10 ((∀𝑧 𝑤𝑦 ∧ ∀𝑦𝑦𝜑) ↔ (𝑤𝑦 ∧ ∀𝑦𝑦𝜑))
2221exbii 1849 . . . . . . . . 9 (∃𝑤(∀𝑧 𝑤𝑦 ∧ ∀𝑦𝑦𝜑) ↔ ∃𝑤(𝑤𝑦 ∧ ∀𝑦𝑦𝜑))
2319, 22bibi12i 343 . . . . . . . 8 ((∀𝑦 𝑧𝑤 ↔ ∃𝑤(∀𝑧 𝑤𝑦 ∧ ∀𝑦𝑦𝜑)) ↔ (𝑧𝑤 ↔ ∃𝑤(𝑤𝑦 ∧ ∀𝑦𝑦𝜑)))
2423albii 1821 . . . . . . 7 (∀𝑧(∀𝑦 𝑧𝑤 ↔ ∃𝑤(∀𝑧 𝑤𝑦 ∧ ∀𝑦𝑦𝜑)) ↔ ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑦 ∧ ∀𝑦𝑦𝜑)))
2524imbi2i 339 . . . . . 6 ((∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑤 ↔ ∃𝑤(∀𝑧 𝑤𝑦 ∧ ∀𝑦𝑦𝜑))) ↔ (∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑦 ∧ ∀𝑦𝑦𝜑))))
2625exbii 1849 . . . . 5 (∃𝑤(∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑤 ↔ ∃𝑤(∀𝑧 𝑤𝑦 ∧ ∀𝑦𝑦𝜑))) ↔ ∃𝑤(∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑦 ∧ ∀𝑦𝑦𝜑))))
2718, 26mpbi 233 . . . 4 𝑤(∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑦 ∧ ∀𝑦𝑦𝜑)))
2810, 17, 27chvar 2402 . . 3 𝑤(∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)))
292819.35i 1879 . 2 (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑤𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)))
30 nfv 1915 . . . . 5 𝑤 𝑧𝑦
31 nfe1 2151 . . . . 5 𝑤𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)
3230, 31nfbi 1904 . . . 4 𝑤(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))
3332nfal 2331 . . 3 𝑤𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))
34 elequ2 2126 . . . . 5 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
35 nfa1 2152 . . . . . . . . 9 𝑦𝑦𝜑
363519.3 2200 . . . . . . . 8 (∀𝑦𝑦𝜑 ↔ ∀𝑦𝜑)
3736anbi2i 625 . . . . . . 7 ((𝑤𝑥 ∧ ∀𝑦𝑦𝜑) ↔ (𝑤𝑥 ∧ ∀𝑦𝜑))
3837exbii 1849 . . . . . 6 (∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑) ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))
3938a1i 11 . . . . 5 (𝑤 = 𝑦 → (∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑) ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
4034, 39bibi12d 349 . . . 4 (𝑤 = 𝑦 → ((𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)) ↔ (𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))))
4140albidv 1921 . . 3 (𝑤 = 𝑦 → (∀𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)) ↔ ∀𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑))))
428, 33, 41cbvexv1 2351 . 2 (∃𝑤𝑧(𝑧𝑤 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝑦𝜑)) ↔ ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
4329, 42sylib 221 1 (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wex 1781  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-13 2379  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-reg 9040
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-nul 4244  df-sn 4526  df-pr 4528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator