| Step | Hyp | Ref
| Expression |
| 1 | | ce0tb 6239 |
. 2
⊢ (M ∈ NC → ((M
↑c 0c) ∈ NC ↔ ∃n ∈ NC M = Tc
n)) |
| 2 | | elncs 6120 |
. . . . . 6
⊢ (n ∈ NC ↔ ∃x n = Nc x) |
| 3 | | tceq 6159 |
. . . . . . . . 9
⊢ (n = Nc x → Tc
n = Tc Nc x) |
| 4 | | vex 2863 |
. . . . . . . . . 10
⊢ x ∈
V |
| 5 | 4 | tcnc 6226 |
. . . . . . . . 9
⊢ Tc Nc x = Nc ℘1x |
| 6 | 3, 5 | syl6eq 2401 |
. . . . . . . 8
⊢ (n = Nc x → Tc
n = Nc ℘1x) |
| 7 | | pw1ss1c 4159 |
. . . . . . . . 9
⊢ ℘1x ⊆
1c |
| 8 | 4 | pw1ex 4304 |
. . . . . . . . . 10
⊢ ℘1x ∈
V |
| 9 | | 1cex 4143 |
. . . . . . . . . 10
⊢
1c ∈
V |
| 10 | 8, 9 | nclec 6196 |
. . . . . . . . 9
⊢ (℘1x ⊆
1c → Nc ℘1x ≤c Nc
1c) |
| 11 | 7, 10 | ax-mp 5 |
. . . . . . . 8
⊢ Nc ℘1x ≤c Nc
1c |
| 12 | 6, 11 | syl6eqbr 4677 |
. . . . . . 7
⊢ (n = Nc x → Tc
n ≤c Nc 1c) |
| 13 | 12 | exlimiv 1634 |
. . . . . 6
⊢ (∃x n = Nc x → Tc
n ≤c Nc 1c) |
| 14 | 2, 13 | sylbi 187 |
. . . . 5
⊢ (n ∈ NC → Tc
n ≤c Nc 1c) |
| 15 | | breq1 4643 |
. . . . 5
⊢ (M = Tc
n → (M ≤c Nc
1c ↔ Tc n ≤c Nc
1c)) |
| 16 | 14, 15 | syl5ibrcom 213 |
. . . 4
⊢ (n ∈ NC → (M = Tc n
→ M ≤c Nc 1c)) |
| 17 | 16 | rexlimiv 2733 |
. . 3
⊢ (∃n ∈ NC M = Tc
n → M ≤c Nc
1c) |
| 18 | 9 | lenc 6224 |
. . . 4
⊢ (M ∈ NC → (M
≤c Nc 1c ↔
∃x ∈ M x ⊆
1c)) |
| 19 | | ncseqnc 6129 |
. . . . . . 7
⊢ (M ∈ NC → (M = Nc x ↔ x ∈ M)) |
| 20 | 19 | biimpar 471 |
. . . . . 6
⊢ ((M ∈ NC ∧ x ∈ M) → M =
Nc x) |
| 21 | 4 | sspw12 4337 |
. . . . . . . 8
⊢ (x ⊆
1c ↔ ∃y x = ℘1y) |
| 22 | | vex 2863 |
. . . . . . . . . . . 12
⊢ y ∈
V |
| 23 | 22 | ncelncsi 6122 |
. . . . . . . . . . 11
⊢ Nc y ∈ NC |
| 24 | 22 | tcnc 6226 |
. . . . . . . . . . 11
⊢ Tc Nc y = Nc ℘1y |
| 25 | | tceq 6159 |
. . . . . . . . . . . . 13
⊢ (n = Nc y → Tc
n = Tc Nc y) |
| 26 | 25 | eqeq1d 2361 |
. . . . . . . . . . . 12
⊢ (n = Nc y → ( Tc n =
Nc ℘1y ↔ Tc
Nc y = Nc ℘1y)) |
| 27 | 26 | rspcev 2956 |
. . . . . . . . . . 11
⊢ (( Nc y ∈ NC ∧ Tc Nc y = Nc ℘1y) → ∃n ∈ NC Tc n =
Nc ℘1y) |
| 28 | 23, 24, 27 | mp2an 653 |
. . . . . . . . . 10
⊢ ∃n ∈ NC Tc n =
Nc ℘1y |
| 29 | | nceq 6109 |
. . . . . . . . . . . . 13
⊢ (x = ℘1y → Nc x = Nc ℘1y) |
| 30 | 29 | eqeq1d 2361 |
. . . . . . . . . . . 12
⊢ (x = ℘1y → ( Nc x = Tc
n ↔ Nc
℘1y = Tc
n)) |
| 31 | | eqcom 2355 |
. . . . . . . . . . . 12
⊢ ( Nc ℘1y = Tc
n ↔ Tc n =
Nc ℘1y) |
| 32 | 30, 31 | syl6bb 252 |
. . . . . . . . . . 11
⊢ (x = ℘1y → ( Nc x = Tc
n ↔ Tc n =
Nc ℘1y)) |
| 33 | 32 | rexbidv 2636 |
. . . . . . . . . 10
⊢ (x = ℘1y → (∃n ∈ NC Nc x = Tc n
↔ ∃n ∈ NC Tc n = Nc ℘1y)) |
| 34 | 28, 33 | mpbiri 224 |
. . . . . . . . 9
⊢ (x = ℘1y → ∃n ∈ NC Nc x = Tc n) |
| 35 | 34 | exlimiv 1634 |
. . . . . . . 8
⊢ (∃y x = ℘1y → ∃n ∈ NC Nc x = Tc n) |
| 36 | 21, 35 | sylbi 187 |
. . . . . . 7
⊢ (x ⊆
1c → ∃n ∈ NC Nc x = Tc
n) |
| 37 | | eqeq1 2359 |
. . . . . . . 8
⊢ (M = Nc x → (M =
Tc n ↔ Nc x = Tc
n)) |
| 38 | 37 | rexbidv 2636 |
. . . . . . 7
⊢ (M = Nc x → (∃n ∈ NC M = Tc
n ↔ ∃n ∈ NC Nc x = Tc n)) |
| 39 | 36, 38 | syl5ibr 212 |
. . . . . 6
⊢ (M = Nc x → (x
⊆ 1c → ∃n ∈ NC M = Tc
n)) |
| 40 | 20, 39 | syl 15 |
. . . . 5
⊢ ((M ∈ NC ∧ x ∈ M) → (x
⊆ 1c → ∃n ∈ NC M = Tc
n)) |
| 41 | 40 | rexlimdva 2739 |
. . . 4
⊢ (M ∈ NC → (∃x ∈ M x ⊆ 1c → ∃n ∈ NC M = Tc
n)) |
| 42 | 18, 41 | sylbid 206 |
. . 3
⊢ (M ∈ NC → (M
≤c Nc 1c →
∃n ∈ NC M = Tc
n)) |
| 43 | 17, 42 | impbid2 195 |
. 2
⊢ (M ∈ NC → (∃n ∈ NC M = Tc n
↔ M ≤c Nc 1c)) |
| 44 | 1, 43 | bitrd 244 |
1
⊢ (M ∈ NC → ((M
↑c 0c) ∈ NC ↔ M ≤c Nc
1c)) |