New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > clos1conn | Unicode version |
Description: If a class is connected to an element of a closure via , then it is a member of the closure. Theorem IX.5.14 of [Rosser] p. 246. (Contributed by SF, 13-Feb-2015.) |
Ref | Expression |
---|---|
clos1base.1 | Clos1 |
Ref | Expression |
---|---|
clos1conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brex 4690 | . . 3 | |
2 | 1 | adantl 452 | . 2 |
3 | eleq1 2413 | . . . . 5 | |
4 | breq1 4643 | . . . . 5 | |
5 | 3, 4 | anbi12d 691 | . . . 4 |
6 | 5 | imbi1d 308 | . . 3 |
7 | breq2 4644 | . . . . 5 | |
8 | 7 | anbi2d 684 | . . . 4 |
9 | eleq1 2413 | . . . 4 | |
10 | 8, 9 | imbi12d 311 | . . 3 |
11 | breq1 4643 | . . . . . . . . . . . . . 14 | |
12 | 11 | rspcev 2956 | . . . . . . . . . . . . 13 |
13 | elima 4755 | . . . . . . . . . . . . 13 | |
14 | 12, 13 | sylibr 203 | . . . . . . . . . . . 12 |
15 | 14 | ancoms 439 | . . . . . . . . . . 11 |
16 | ssel 3268 | . . . . . . . . . . 11 | |
17 | 15, 16 | syl5 28 | . . . . . . . . . 10 |
18 | 17 | exp3a 425 | . . . . . . . . 9 |
19 | 18 | com12 27 | . . . . . . . 8 |
20 | 19 | adantld 453 | . . . . . . 7 |
21 | 20 | a2d 23 | . . . . . 6 |
22 | 21 | alimdv 1621 | . . . . 5 |
23 | clos1base.1 | . . . . . . . 8 Clos1 | |
24 | df-clos1 5874 | . . . . . . . 8 Clos1 | |
25 | 23, 24 | eqtri 2373 | . . . . . . 7 |
26 | 25 | eleq2i 2417 | . . . . . 6 |
27 | vex 2863 | . . . . . . 7 | |
28 | 27 | elintab 3938 | . . . . . 6 |
29 | 26, 28 | bitri 240 | . . . . 5 |
30 | 25 | eleq2i 2417 | . . . . . 6 |
31 | vex 2863 | . . . . . . 7 | |
32 | 31 | elintab 3938 | . . . . . 6 |
33 | 30, 32 | bitri 240 | . . . . 5 |
34 | 22, 29, 33 | 3imtr4g 261 | . . . 4 |
35 | 34 | impcom 419 | . . 3 |
36 | 6, 10, 35 | vtocl2g 2919 | . 2 |
37 | 2, 36 | mpcom 32 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wal 1540 wceq 1642 wcel 1710 cab 2339 wrex 2616 cvv 2860 wss 3258 cint 3927 class class class wbr 4640 cima 4723 Clos1 cclos1 5873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-br 4641 df-ima 4728 df-clos1 5874 |
This theorem is referenced by: clos1induct 5881 clos1basesuc 5883 spaccl 6287 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |