New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nchoicelem10 | Unicode version |
Description: Lemma for nchoice 6309. Stratification helper lemma. (Contributed by SF, 18-Mar-2015.) |
Ref | Expression |
---|---|
nchoicelem10.1 | |
nchoicelem10.2 |
Ref | Expression |
---|---|
nchoicelem10 | ∼ Ins3 S Ins2 ∼ ∼ S S S Image1c Clos1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nchoicelem10.2 | . 2 | |
2 | elrn 4897 | . . . . 5 ∼ S S S Image ∼ S S S Image | |
3 | trtxp 5782 | . . . . . . 7 ∼ S S S Image ∼ S S S Image | |
4 | brcnv 4893 | . . . . . . . . . 10 ∼ S ∼ S | |
5 | df-br 4641 | . . . . . . . . . 10 ∼ S ∼ S | |
6 | snex 4112 | . . . . . . . . . . . . 13 | |
7 | vex 2863 | . . . . . . . . . . . . 13 | |
8 | 6, 7 | opex 4589 | . . . . . . . . . . . 12 |
9 | 8 | elcompl 3226 | . . . . . . . . . . 11 ∼ S S |
10 | vex 2863 | . . . . . . . . . . . 12 | |
11 | 10, 7 | opelssetsn 4761 | . . . . . . . . . . 11 S |
12 | 9, 11 | xchbinx 301 | . . . . . . . . . 10 ∼ S |
13 | 4, 5, 12 | 3bitri 262 | . . . . . . . . 9 ∼ S |
14 | brres 4950 | . . . . . . . . . 10 S S Image S S Image | |
15 | brcnv 4893 | . . . . . . . . . . . 12 S S | |
16 | 1, 7 | brsset 4759 | . . . . . . . . . . . 12 S |
17 | 15, 16 | bitri 240 | . . . . . . . . . . 11 S |
18 | elfix 5788 | . . . . . . . . . . . 12 S Image S Image | |
19 | brco 4884 | . . . . . . . . . . . . 13 S Image Image S | |
20 | vex 2863 | . . . . . . . . . . . . . . . 16 | |
21 | 7, 20 | brimage 5794 | . . . . . . . . . . . . . . 15 Image |
22 | 20, 7 | brsset 4759 | . . . . . . . . . . . . . . 15 S |
23 | 21, 22 | anbi12i 678 | . . . . . . . . . . . . . 14 Image S |
24 | 23 | exbii 1582 | . . . . . . . . . . . . 13 Image S |
25 | nchoicelem10.1 | . . . . . . . . . . . . . . 15 | |
26 | 25, 7 | imaex 4748 | . . . . . . . . . . . . . 14 |
27 | sseq1 3293 | . . . . . . . . . . . . . 14 | |
28 | 26, 27 | ceqsexv 2895 | . . . . . . . . . . . . 13 |
29 | 19, 24, 28 | 3bitri 262 | . . . . . . . . . . . 12 S Image |
30 | 18, 29 | bitri 240 | . . . . . . . . . . 11 S Image |
31 | 17, 30 | anbi12i 678 | . . . . . . . . . 10 S S Image |
32 | 14, 31 | bitri 240 | . . . . . . . . 9 S S Image |
33 | 13, 32 | anbi12i 678 | . . . . . . . 8 ∼ S S S Image |
34 | ancom 437 | . . . . . . . 8 | |
35 | 33, 34 | bitri 240 | . . . . . . 7 ∼ S S S Image |
36 | annim 414 | . . . . . . 7 | |
37 | 3, 35, 36 | 3bitri 262 | . . . . . 6 ∼ S S S Image |
38 | 37 | exbii 1582 | . . . . 5 ∼ S S S Image |
39 | exnal 1574 | . . . . 5 | |
40 | 2, 38, 39 | 3bitrri 263 | . . . 4 ∼ S S S Image |
41 | 40 | con1bii 321 | . . 3 ∼ S S S Image |
42 | 6, 1 | opex 4589 | . . . 4 |
43 | 42 | elcompl 3226 | . . 3 ∼ ∼ S S S Image ∼ S S S Image |
44 | df-clos1 5874 | . . . . 5 Clos1 | |
45 | 44 | eleq2i 2417 | . . . 4 Clos1 |
46 | 10 | elintab 3938 | . . . 4 |
47 | 45, 46 | bitri 240 | . . 3 Clos1 |
48 | 41, 43, 47 | 3bitr4i 268 | . 2 ∼ ∼ S S S Image Clos1 |
49 | 1, 48 | releqel 5808 | 1 ∼ Ins3 S Ins2 ∼ ∼ S S S Image1c Clos1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 cab 2339 cvv 2860 ∼ ccompl 3206 csymdif 3210 wss 3258 csn 3738 cint 3927 1cc1c 4135 cop 4562 class class class wbr 4640 S csset 4720 ccom 4722 cima 4723 ccnv 4772 crn 4774 cres 4775 ctxp 5736 cfix 5740 Ins2 cins2 5750 Ins3 cins3 5752 Imagecimage 5754 Clos1 cclos1 5873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-res 4789 df-2nd 4798 df-txp 5737 df-fix 5741 df-ins2 5751 df-ins3 5753 df-image 5755 df-clos1 5874 |
This theorem is referenced by: nchoicelem11 6300 nchoicelem16 6305 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |