New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > neq0 | GIF version |
Description: A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
neq0 | ⊢ (¬ A = ∅ ↔ ∃x x ∈ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2519 | . 2 ⊢ (A ≠ ∅ ↔ ¬ A = ∅) | |
2 | n0 3560 | . 2 ⊢ (A ≠ ∅ ↔ ∃x x ∈ A) | |
3 | 1, 2 | bitr3i 242 | 1 ⊢ (¬ A = ∅ ↔ ∃x x ∈ A) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: eq0 3565 ralidm 3654 snprc 3789 pwpw0 3856 sssn 3865 pwsnALT 3883 uni0b 3917 nndisjeq 4430 isomin 5497 erdisj 5973 |
Copyright terms: Public domain | W3C validator |