New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nntccl | Unicode version |
Description: Cardinal T is closed under the natural numbers. (Contributed by SF, 3-Mar-2015.) |
Ref | Expression |
---|---|
nntccl | Nn Tc Nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nulnnn 4556 | . . . . 5 Nn | |
2 | eleq1 2413 | . . . . 5 Nn Nn | |
3 | 1, 2 | mtbiri 294 | . . . 4 Nn |
4 | 3 | necon2ai 2561 | . . 3 Nn |
5 | n0 3559 | . . 3 | |
6 | 4, 5 | sylib 188 | . 2 Nn |
7 | eleq2 2414 | . . . . . . . . 9 | |
8 | 7 | rspcev 2955 | . . . . . . . 8 Nn Nn |
9 | elfin 4420 | . . . . . . . 8 Fin Nn | |
10 | 8, 9 | sylibr 203 | . . . . . . 7 Nn Fin |
11 | pw1fin 6169 | . . . . . . 7 Fin 1 Fin | |
12 | 10, 11 | syl 15 | . . . . . 6 Nn 1 Fin |
13 | elfin 4420 | . . . . . 6 1 Fin Nn 1 | |
14 | 12, 13 | sylib 188 | . . . . 5 Nn Nn 1 |
15 | nnnc 6146 | . . . . . . . . . . . 12 Nn NC | |
16 | tccl 6160 | . . . . . . . . . . . 12 NC Tc NC | |
17 | 15, 16 | syl 15 | . . . . . . . . . . 11 Nn Tc NC |
18 | 17 | ad2antrr 706 | . . . . . . . . . 10 Nn Nn 1 Tc NC |
19 | nnnc 6146 | . . . . . . . . . . 11 Nn NC | |
20 | 19 | ad2antlr 707 | . . . . . . . . . 10 Nn Nn 1 NC |
21 | 15 | ad2antrr 706 | . . . . . . . . . . 11 Nn Nn 1 NC |
22 | simprl 732 | . . . . . . . . . . 11 Nn Nn 1 | |
23 | pw1eltc 6162 | . . . . . . . . . . 11 NC 1 Tc | |
24 | 21, 22, 23 | syl2anc 642 | . . . . . . . . . 10 Nn Nn 1 1 Tc |
25 | simprr 733 | . . . . . . . . . 10 Nn Nn 1 1 | |
26 | nceleq 6149 | . . . . . . . . . 10 Tc NC NC 1 Tc 1 Tc | |
27 | 18, 20, 24, 25, 26 | syl22anc 1183 | . . . . . . . . 9 Nn Nn 1 Tc |
28 | simplr 731 | . . . . . . . . 9 Nn Nn 1 Nn | |
29 | 27, 28 | eqeltrd 2427 | . . . . . . . 8 Nn Nn 1 Tc Nn |
30 | 29 | expr 598 | . . . . . . 7 Nn Nn 1 Tc Nn |
31 | 30 | an32s 779 | . . . . . 6 Nn Nn 1 Tc Nn |
32 | 31 | rexlimdva 2738 | . . . . 5 Nn Nn 1 Tc Nn |
33 | 14, 32 | mpd 14 | . . . 4 Nn Tc Nn |
34 | 33 | ex 423 | . . 3 Nn Tc Nn |
35 | 34 | exlimdv 1636 | . 2 Nn Tc Nn |
36 | 6, 35 | mpd 14 | 1 Nn Tc Nn |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wex 1541 wceq 1642 wcel 1710 wne 2516 wrex 2615 c0 3550 1 cpw1 4135 Nn cnnc 4373 Fin cfin 4376 NC cncs 6088 Tc ctc 6093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-trans 5899 df-sym 5908 df-er 5909 df-ec 5947 df-qs 5951 df-en 6029 df-ncs 6098 df-nc 6101 df-tc 6103 |
This theorem is referenced by: nmembers1 6271 nchoicelem1 6289 nchoicelem2 6290 |
Copyright terms: Public domain | W3C validator |