| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > clos1basesuc | Unicode version | ||
| Description: A member of a closure is
either in the base set or connected to another
       member by  | 
| Ref | Expression | 
|---|---|
| clos1basesuc.1 | 
 | 
| clos1basesuc.2 | 
 | 
| clos1basesuc.3 | 
 | 
| Ref | Expression | 
|---|---|
| clos1basesuc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clos1basesuc.1 | 
. . 3
 | |
| 2 | clos1basesuc.2 | 
. . 3
 | |
| 3 | clos1basesuc.3 | 
. . 3
 | |
| 4 | abid2 2471 | 
. . . . . . 7
 | |
| 5 | 4 | eqcomi 2357 | 
. . . . . 6
 | 
| 6 | df-ima 4728 | 
. . . . . 6
 | |
| 7 | 5, 6 | uneq12i 3417 | 
. . . . 5
 | 
| 8 | unab 3522 | 
. . . . 5
 | |
| 9 | 7, 8 | eqtri 2373 | 
. . . 4
 | 
| 10 | 1, 2 | clos1ex 5877 | 
. . . . . . 7
 | 
| 11 | 3, 10 | eqeltri 2423 | 
. . . . . 6
 | 
| 12 | 2, 11 | imaex 4748 | 
. . . . 5
 | 
| 13 | 1, 12 | unex 4107 | 
. . . 4
 | 
| 14 | 9, 13 | eqeltrri 2424 | 
. . 3
 | 
| 15 | eleq1 2413 | 
. . . 4
 | |
| 16 | breq2 4644 | 
. . . . 5
 | |
| 17 | 16 | rexbidv 2636 | 
. . . 4
 | 
| 18 | 15, 17 | orbi12d 690 | 
. . 3
 | 
| 19 | eleq1 2413 | 
. . . 4
 | |
| 20 | breq2 4644 | 
. . . . 5
 | |
| 21 | 20 | rexbidv 2636 | 
. . . 4
 | 
| 22 | 19, 21 | orbi12d 690 | 
. . 3
 | 
| 23 | eleq1 2413 | 
. . . 4
 | |
| 24 | breq2 4644 | 
. . . . 5
 | |
| 25 | 24 | rexbidv 2636 | 
. . . 4
 | 
| 26 | 23, 25 | orbi12d 690 | 
. . 3
 | 
| 27 | orc 374 | 
. . 3
 | |
| 28 | 3 | clos1base 5879 | 
. . . . . . . . . 10
 | 
| 29 | 28 | sseli 3270 | 
. . . . . . . . 9
 | 
| 30 | breq1 4643 | 
. . . . . . . . . . 11
 | |
| 31 | 30 | rspcev 2956 | 
. . . . . . . . . 10
 | 
| 32 | 31 | ex 423 | 
. . . . . . . . 9
 | 
| 33 | 29, 32 | syl 15 | 
. . . . . . . 8
 | 
| 34 | 3 | clos1conn 5880 | 
. . . . . . . . . 10
 | 
| 35 | 34, 32 | syl 15 | 
. . . . . . . . 9
 | 
| 36 | 35 | rexlimiva 2734 | 
. . . . . . . 8
 | 
| 37 | 33, 36 | jaoi 368 | 
. . . . . . 7
 | 
| 38 | 37 | impcom 419 | 
. . . . . 6
 | 
| 39 | breq1 4643 | 
. . . . . . 7
 | |
| 40 | 39 | cbvrexv 2837 | 
. . . . . 6
 | 
| 41 | 38, 40 | sylibr 203 | 
. . . . 5
 | 
| 42 | 41 | olcd 382 | 
. . . 4
 | 
| 43 | 42 | 3adant1 973 | 
. . 3
 | 
| 44 | 1, 2, 3, 14, 18, 22, 26, 27, 43 | clos1is 5882 | 
. 2
 | 
| 45 | 28 | sseli 3270 | 
. . 3
 | 
| 46 | 3 | clos1conn 5880 | 
. . . 4
 | 
| 47 | 46 | rexlimiva 2734 | 
. . 3
 | 
| 48 | 45, 47 | jaoi 368 | 
. 2
 | 
| 49 | 44, 48 | impbii 180 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-2nd 4798 df-txp 5737 df-fix 5741 df-ins2 5751 df-ins3 5753 df-image 5755 df-clos1 5874 | 
| This theorem is referenced by: clos1baseima 5884 clos1basesucg 5885 | 
| Copyright terms: Public domain | W3C validator |