NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  clos1basesuc Unicode version

Theorem clos1basesuc 5883
Description: A member of a closure is either in the base set or connected to another member by . Theorem IX.5.16 of [Rosser] p. 248. (Contributed by SF, 13-Feb-2015.)
Hypotheses
Ref Expression
clos1basesuc.1
clos1basesuc.2
clos1basesuc.3 Clos1
Assertion
Ref Expression
clos1basesuc
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem clos1basesuc
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clos1basesuc.1 . . 3
2 clos1basesuc.2 . . 3
3 clos1basesuc.3 . . 3 Clos1
4 abid2 2471 . . . . . . 7
54eqcomi 2357 . . . . . 6
6 df-ima 4728 . . . . . 6
75, 6uneq12i 3417 . . . . 5
8 unab 3522 . . . . 5
97, 8eqtri 2373 . . . 4
101, 2clos1ex 5877 . . . . . . 7 Clos1
113, 10eqeltri 2423 . . . . . 6
122, 11imaex 4748 . . . . 5
131, 12unex 4107 . . . 4
149, 13eqeltrri 2424 . . 3
15 eleq1 2413 . . . 4
16 breq2 4644 . . . . 5
1716rexbidv 2636 . . . 4
1815, 17orbi12d 690 . . 3
19 eleq1 2413 . . . 4
20 breq2 4644 . . . . 5
2120rexbidv 2636 . . . 4
2219, 21orbi12d 690 . . 3
23 eleq1 2413 . . . 4
24 breq2 4644 . . . . 5
2524rexbidv 2636 . . . 4
2623, 25orbi12d 690 . . 3
27 orc 374 . . 3
283clos1base 5879 . . . . . . . . . 10
2928sseli 3270 . . . . . . . . 9
30 breq1 4643 . . . . . . . . . . 11
3130rspcev 2956 . . . . . . . . . 10
3231ex 423 . . . . . . . . 9
3329, 32syl 15 . . . . . . . 8
343clos1conn 5880 . . . . . . . . . 10
3534, 32syl 15 . . . . . . . . 9
3635rexlimiva 2734 . . . . . . . 8
3733, 36jaoi 368 . . . . . . 7
3837impcom 419 . . . . . 6
39 breq1 4643 . . . . . . 7
4039cbvrexv 2837 . . . . . 6
4138, 40sylibr 203 . . . . 5
4241olcd 382 . . . 4
43423adant1 973 . . 3
441, 2, 3, 14, 18, 22, 26, 27, 43clos1is 5882 . 2
4528sseli 3270 . . 3
463clos1conn 5880 . . . 4
4746rexlimiva 2734 . . 3
4845, 47jaoi 368 . 2
4944, 48impbii 180 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wo 357   wa 358   wceq 1642   wcel 1710  cab 2339  wrex 2616  cvv 2860   cun 3208   class class class wbr 4640  cima 4723   Clos1 cclos1 5873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-2nd 4798  df-txp 5737  df-fix 5741  df-ins2 5751  df-ins3 5753  df-image 5755  df-clos1 5874
This theorem is referenced by:  clos1baseima  5884  clos1basesucg  5885
  Copyright terms: Public domain W3C validator