New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > clos1basesuc | Unicode version |
Description: A member of a closure is either in the base set or connected to another member by . Theorem IX.5.16 of [Rosser] p. 248. (Contributed by SF, 13-Feb-2015.) |
Ref | Expression |
---|---|
clos1basesuc.1 | |
clos1basesuc.2 | |
clos1basesuc.3 | Clos1 |
Ref | Expression |
---|---|
clos1basesuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clos1basesuc.1 | . . 3 | |
2 | clos1basesuc.2 | . . 3 | |
3 | clos1basesuc.3 | . . 3 Clos1 | |
4 | abid2 2471 | . . . . . . 7 | |
5 | 4 | eqcomi 2357 | . . . . . 6 |
6 | df-ima 4728 | . . . . . 6 | |
7 | 5, 6 | uneq12i 3417 | . . . . 5 |
8 | unab 3522 | . . . . 5 | |
9 | 7, 8 | eqtri 2373 | . . . 4 |
10 | 1, 2 | clos1ex 5877 | . . . . . . 7 Clos1 |
11 | 3, 10 | eqeltri 2423 | . . . . . 6 |
12 | 2, 11 | imaex 4748 | . . . . 5 |
13 | 1, 12 | unex 4107 | . . . 4 |
14 | 9, 13 | eqeltrri 2424 | . . 3 |
15 | eleq1 2413 | . . . 4 | |
16 | breq2 4644 | . . . . 5 | |
17 | 16 | rexbidv 2636 | . . . 4 |
18 | 15, 17 | orbi12d 690 | . . 3 |
19 | eleq1 2413 | . . . 4 | |
20 | breq2 4644 | . . . . 5 | |
21 | 20 | rexbidv 2636 | . . . 4 |
22 | 19, 21 | orbi12d 690 | . . 3 |
23 | eleq1 2413 | . . . 4 | |
24 | breq2 4644 | . . . . 5 | |
25 | 24 | rexbidv 2636 | . . . 4 |
26 | 23, 25 | orbi12d 690 | . . 3 |
27 | orc 374 | . . 3 | |
28 | 3 | clos1base 5879 | . . . . . . . . . 10 |
29 | 28 | sseli 3270 | . . . . . . . . 9 |
30 | breq1 4643 | . . . . . . . . . . 11 | |
31 | 30 | rspcev 2956 | . . . . . . . . . 10 |
32 | 31 | ex 423 | . . . . . . . . 9 |
33 | 29, 32 | syl 15 | . . . . . . . 8 |
34 | 3 | clos1conn 5880 | . . . . . . . . . 10 |
35 | 34, 32 | syl 15 | . . . . . . . . 9 |
36 | 35 | rexlimiva 2734 | . . . . . . . 8 |
37 | 33, 36 | jaoi 368 | . . . . . . 7 |
38 | 37 | impcom 419 | . . . . . 6 |
39 | breq1 4643 | . . . . . . 7 | |
40 | 39 | cbvrexv 2837 | . . . . . 6 |
41 | 38, 40 | sylibr 203 | . . . . 5 |
42 | 41 | olcd 382 | . . . 4 |
43 | 42 | 3adant1 973 | . . 3 |
44 | 1, 2, 3, 14, 18, 22, 26, 27, 43 | clos1is 5882 | . 2 |
45 | 28 | sseli 3270 | . . 3 |
46 | 3 | clos1conn 5880 | . . . 4 |
47 | 46 | rexlimiva 2734 | . . 3 |
48 | 45, 47 | jaoi 368 | . 2 |
49 | 44, 48 | impbii 180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wo 357 wa 358 wceq 1642 wcel 1710 cab 2339 wrex 2616 cvv 2860 cun 3208 class class class wbr 4640 cima 4723 Clos1 cclos1 5873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-2nd 4798 df-txp 5737 df-fix 5741 df-ins2 5751 df-ins3 5753 df-image 5755 df-clos1 5874 |
This theorem is referenced by: clos1baseima 5884 clos1basesucg 5885 |
Copyright terms: Public domain | W3C validator |