NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3reeanv GIF version

Theorem 3reeanv 2779
Description: Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
Assertion
Ref Expression
3reeanv (x A y B z C (φ ψ χ) ↔ (x A φ y B ψ z C χ))
Distinct variable groups:   φ,y,z   ψ,x,z   χ,x,y   y,A   x,B,z   x,C,y
Allowed substitution hints:   φ(x)   ψ(y)   χ(z)   A(x,z)   B(y)   C(z)

Proof of Theorem 3reeanv
StepHypRef Expression
1 r19.41v 2764 . . 3 (x A (y B (φ ψ) z C χ) ↔ (x A y B (φ ψ) z C χ))
2 reeanv 2778 . . . 4 (x A y B (φ ψ) ↔ (x A φ y B ψ))
32anbi1i 676 . . 3 ((x A y B (φ ψ) z C χ) ↔ ((x A φ y B ψ) z C χ))
41, 3bitri 240 . 2 (x A (y B (φ ψ) z C χ) ↔ ((x A φ y B ψ) z C χ))
5 df-3an 936 . . . . 5 ((φ ψ χ) ↔ ((φ ψ) χ))
652rexbii 2641 . . . 4 (y B z C (φ ψ χ) ↔ y B z C ((φ ψ) χ))
7 reeanv 2778 . . . 4 (y B z C ((φ ψ) χ) ↔ (y B (φ ψ) z C χ))
86, 7bitri 240 . . 3 (y B z C (φ ψ χ) ↔ (y B (φ ψ) z C χ))
98rexbii 2639 . 2 (x A y B z C (φ ψ χ) ↔ x A (y B (φ ψ) z C χ))
10 df-3an 936 . 2 ((x A φ y B ψ z C χ) ↔ ((x A φ y B ψ) z C χ))
114, 9, 103bitr4i 268 1 (x A y B z C (φ ψ χ) ↔ (x A φ y B ψ z C χ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3a 934  wrex 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rex 2620
This theorem is referenced by:  xpassen  6057
  Copyright terms: Public domain W3C validator