New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reeanv | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
reeanv | ⊢ (∃x ∈ A ∃y ∈ B (φ ∧ ψ) ↔ (∃x ∈ A φ ∧ ∃y ∈ B ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎyφ | |
2 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
3 | 1, 2 | reean 2777 | 1 ⊢ (∃x ∈ A ∃y ∈ B (φ ∧ ψ) ↔ (∃x ∈ A φ ∧ ∃y ∈ B ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wrex 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 |
This theorem is referenced by: 3reeanv 2779 2ralor 2780 ltfintr 4459 ncfinraise 4481 ncfinlower 4483 nnpw1ex 4484 tfin11 4493 nnpweq 4523 sfinltfin 4535 dfxp2 5113 xpassen 6057 peano4nc 6150 ncspw1eu 6159 sbth 6206 lectr 6211 |
Copyright terms: Public domain | W3C validator |