NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reeanv GIF version

Theorem reeanv 2779
Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.)
Assertion
Ref Expression
reeanv (x A y B (φ ψ) ↔ (x A φ y B ψ))
Distinct variable groups:   φ,y   ψ,x   x,y   y,A   x,B
Allowed substitution hints:   φ(x)   ψ(y)   A(x)   B(y)

Proof of Theorem reeanv
StepHypRef Expression
1 nfv 1619 . 2 yφ
2 nfv 1619 . 2 xψ
31, 2reean 2778 1 (x A y B (φ ψ) ↔ (x A φ y B ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621
This theorem is referenced by:  3reeanv  2780  2ralor  2781  ltfintr  4460  ncfinraise  4482  ncfinlower  4484  nnpw1ex  4485  tfin11  4494  nnpweq  4524  sfinltfin  4536  dfxp2  5114  xpassen  6058  peano4nc  6151  ncspw1eu  6160  sbth  6207  lectr  6212
  Copyright terms: Public domain W3C validator