NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reeanv GIF version

Theorem reeanv 2778
Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.)
Assertion
Ref Expression
reeanv (x A y B (φ ψ) ↔ (x A φ y B ψ))
Distinct variable groups:   φ,y   ψ,x   x,y   y,A   x,B
Allowed substitution hints:   φ(x)   ψ(y)   A(x)   B(y)

Proof of Theorem reeanv
StepHypRef Expression
1 nfv 1619 . 2 yφ
2 nfv 1619 . 2 xψ
31, 2reean 2777 1 (x A y B (φ ψ) ↔ (x A φ y B ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wrex 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rex 2620
This theorem is referenced by:  3reeanv  2779  2ralor  2780  ltfintr  4459  ncfinraise  4481  ncfinlower  4483  nnpw1ex  4484  tfin11  4493  nnpweq  4523  sfinltfin  4535  dfxp2  5113  xpassen  6057  peano4nc  6150  ncspw1eu  6159  sbth  6206  lectr  6211
  Copyright terms: Public domain W3C validator