New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cleqf | GIF version |
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
cleqf.1 | ⊢ ℲxA |
cleqf.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
cleqf | ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2347 | . 2 ⊢ (A = B ↔ ∀y(y ∈ A ↔ y ∈ B)) | |
2 | nfv 1619 | . . 3 ⊢ Ⅎy(x ∈ A ↔ x ∈ B) | |
3 | cleqf.1 | . . . . 5 ⊢ ℲxA | |
4 | 3 | nfcri 2484 | . . . 4 ⊢ Ⅎx y ∈ A |
5 | cleqf.2 | . . . . 5 ⊢ ℲxB | |
6 | 5 | nfcri 2484 | . . . 4 ⊢ Ⅎx y ∈ B |
7 | 4, 6 | nfbi 1834 | . . 3 ⊢ Ⅎx(y ∈ A ↔ y ∈ B) |
8 | eleq1 2413 | . . . 4 ⊢ (x = y → (x ∈ A ↔ y ∈ A)) | |
9 | eleq1 2413 | . . . 4 ⊢ (x = y → (x ∈ B ↔ y ∈ B)) | |
10 | 8, 9 | bibi12d 312 | . . 3 ⊢ (x = y → ((x ∈ A ↔ x ∈ B) ↔ (y ∈ A ↔ y ∈ B))) |
11 | 2, 7, 10 | cbval 1984 | . 2 ⊢ (∀x(x ∈ A ↔ x ∈ B) ↔ ∀y(y ∈ A ↔ y ∈ B)) |
12 | 1, 11 | bitr4i 243 | 1 ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 |
This theorem is referenced by: abid2f 2515 n0f 3559 iunab 4013 iinab 4028 sniota 4370 |
Copyright terms: Public domain | W3C validator |