NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  abrexco GIF version

Theorem abrexco 5464
Description: Composition of two image maps C(y) and B(w). (Contributed by set.mm contributors, 27-May-2013.)
Hypotheses
Ref Expression
abrexco.1 B V
abrexco.2 (y = BC = D)
Assertion
Ref Expression
abrexco {x y {z w A z = B}x = C} = {x w A x = D}
Distinct variable groups:   y,A,z   y,B,z   w,C   y,D   x,w,y   z,w
Allowed substitution hints:   A(x,w)   B(x,w)   C(x,y,z)   D(x,z,w)

Proof of Theorem abrexco
StepHypRef Expression
1 df-rex 2621 . . . 4 (y {z w A z = B}x = Cy(y {z w A z = B} x = C))
2 vex 2863 . . . . . . . 8 y V
3 eqeq1 2359 . . . . . . . . 9 (z = y → (z = By = B))
43rexbidv 2636 . . . . . . . 8 (z = y → (w A z = Bw A y = B))
52, 4elab 2986 . . . . . . 7 (y {z w A z = B} ↔ w A y = B)
65anbi1i 676 . . . . . 6 ((y {z w A z = B} x = C) ↔ (w A y = B x = C))
7 r19.41v 2765 . . . . . 6 (w A (y = B x = C) ↔ (w A y = B x = C))
86, 7bitr4i 243 . . . . 5 ((y {z w A z = B} x = C) ↔ w A (y = B x = C))
98exbii 1582 . . . 4 (y(y {z w A z = B} x = C) ↔ yw A (y = B x = C))
101, 9bitri 240 . . 3 (y {z w A z = B}x = Cyw A (y = B x = C))
11 rexcom4 2879 . . 3 (w A y(y = B x = C) ↔ yw A (y = B x = C))
12 abrexco.1 . . . . 5 B V
13 abrexco.2 . . . . . 6 (y = BC = D)
1413eqeq2d 2364 . . . . 5 (y = B → (x = Cx = D))
1512, 14ceqsexv 2895 . . . 4 (y(y = B x = C) ↔ x = D)
1615rexbii 2640 . . 3 (w A y(y = B x = C) ↔ w A x = D)
1710, 11, 163bitr2i 264 . 2 (y {z w A z = B}x = Cw A x = D)
1817abbii 2466 1 {x y {z w A z = B}x = C} = {x w A x = D}
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  Vcvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator