Proof of Theorem abrexco
Step | Hyp | Ref
| Expression |
1 | | df-rex 2621 |
. . . 4
⊢ (∃y ∈ {z ∣ ∃w ∈ A z = B}x = C ↔ ∃y(y ∈ {z ∣ ∃w ∈ A z = B} ∧ x = C)) |
2 | | vex 2863 |
. . . . . . . 8
⊢ y ∈
V |
3 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (z = y →
(z = B
↔ y = B)) |
4 | 3 | rexbidv 2636 |
. . . . . . . 8
⊢ (z = y →
(∃w
∈ A
z = B
↔ ∃w ∈ A y = B)) |
5 | 2, 4 | elab 2986 |
. . . . . . 7
⊢ (y ∈ {z ∣ ∃w ∈ A z = B} ↔
∃w ∈ A y = B) |
6 | 5 | anbi1i 676 |
. . . . . 6
⊢ ((y ∈ {z ∣ ∃w ∈ A z = B} ∧ x = C) ↔ (∃w ∈ A y = B ∧ x = C)) |
7 | | r19.41v 2765 |
. . . . . 6
⊢ (∃w ∈ A (y = B ∧ x = C) ↔ (∃w ∈ A y = B ∧ x = C)) |
8 | 6, 7 | bitr4i 243 |
. . . . 5
⊢ ((y ∈ {z ∣ ∃w ∈ A z = B} ∧ x = C) ↔ ∃w ∈ A (y = B ∧ x = C)) |
9 | 8 | exbii 1582 |
. . . 4
⊢ (∃y(y ∈ {z ∣ ∃w ∈ A z = B} ∧ x = C) ↔ ∃y∃w ∈ A (y = B ∧ x = C)) |
10 | 1, 9 | bitri 240 |
. . 3
⊢ (∃y ∈ {z ∣ ∃w ∈ A z = B}x = C ↔ ∃y∃w ∈ A (y = B ∧ x = C)) |
11 | | rexcom4 2879 |
. . 3
⊢ (∃w ∈ A ∃y(y = B ∧ x = C) ↔ ∃y∃w ∈ A (y = B ∧ x = C)) |
12 | | abrexco.1 |
. . . . 5
⊢ B ∈
V |
13 | | abrexco.2 |
. . . . . 6
⊢ (y = B →
C = D) |
14 | 13 | eqeq2d 2364 |
. . . . 5
⊢ (y = B →
(x = C
↔ x = D)) |
15 | 12, 14 | ceqsexv 2895 |
. . . 4
⊢ (∃y(y = B ∧ x = C) ↔ x =
D) |
16 | 15 | rexbii 2640 |
. . 3
⊢ (∃w ∈ A ∃y(y = B ∧ x = C) ↔ ∃w ∈ A x = D) |
17 | 10, 11, 16 | 3bitr2i 264 |
. 2
⊢ (∃y ∈ {z ∣ ∃w ∈ A z = B}x = C ↔ ∃w ∈ A x = D) |
18 | 17 | abbii 2466 |
1
⊢ {x ∣ ∃y ∈ {z ∣ ∃w ∈ A z = B}x = C} = {x ∣ ∃w ∈ A x = D} |