NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mapsspw GIF version

Theorem mapsspw 6023
Description: Set exponentiation is a subset of the power set of the cross product of its arguments. (Contributed by set.mm contributors, 8-Dec-2006.)
Assertion
Ref Expression
mapsspw (Am B) (B × A)

Proof of Theorem mapsspw
Dummy variables x f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 3580 . . 3 (B × A)
2 sseq1 3293 . . 3 ((Am B) = → ((Am B) (B × A) ↔ (B × A)))
31, 2mpbiri 224 . 2 ((Am B) = → (Am B) (B × A))
4 n0 3560 . . . 4 ((Am B) ≠ x x (Am B))
5 elovex12 5649 . . . . 5 (x (Am B) → (A V B V))
65exlimiv 1634 . . . 4 (x x (Am B) → (A V B V))
74, 6sylbi 187 . . 3 ((Am B) ≠ → (A V B V))
8 fssxp 5233 . . . . . 6 (f:B–→Af (B × A))
9 vex 2863 . . . . . . 7 f V
109elpw 3729 . . . . . 6 (f (B × A) ↔ f (B × A))
118, 10sylibr 203 . . . . 5 (f:B–→Af (B × A))
1211abssi 3342 . . . 4 {f f:B–→A} (B × A)
13 mapvalg 6010 . . . . 5 ((A V B V) → (Am B) = {f f:B–→A})
1413sseq1d 3299 . . . 4 ((A V B V) → ((Am B) (B × A) ↔ {f f:B–→A} (B × A)))
1512, 14mpbiri 224 . . 3 ((A V B V) → (Am B) (B × A))
167, 15syl 15 . 2 ((Am B) ≠ → (Am B) (B × A))
173, 16pm2.61ine 2593 1 (Am B) (B × A)
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wne 2517  Vcvv 2860   wss 3258  c0 3551  cpw 3723   × cxp 4771  –→wf 4778  (class class class)co 5526  m cmap 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-map 6002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator