New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > funimass4 | GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
funimass4 | ⊢ ((Fun F ∧ A ⊆ dom F) → ((F “ A) ⊆ B ↔ ∀x ∈ A (F ‘x) ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3263 | . 2 ⊢ ((F “ A) ⊆ B ↔ ∀y(y ∈ (F “ A) → y ∈ B)) | |
2 | ssel2 3269 | . . . . . . . . . 10 ⊢ ((A ⊆ dom F ∧ x ∈ A) → x ∈ dom F) | |
3 | eqcom 2355 | . . . . . . . . . . 11 ⊢ (y = (F ‘x) ↔ (F ‘x) = y) | |
4 | funbrfvb 5361 | . . . . . . . . . . 11 ⊢ ((Fun F ∧ x ∈ dom F) → ((F ‘x) = y ↔ xFy)) | |
5 | 3, 4 | syl5bb 248 | . . . . . . . . . 10 ⊢ ((Fun F ∧ x ∈ dom F) → (y = (F ‘x) ↔ xFy)) |
6 | 2, 5 | sylan2 460 | . . . . . . . . 9 ⊢ ((Fun F ∧ (A ⊆ dom F ∧ x ∈ A)) → (y = (F ‘x) ↔ xFy)) |
7 | 6 | anassrs 629 | . . . . . . . 8 ⊢ (((Fun F ∧ A ⊆ dom F) ∧ x ∈ A) → (y = (F ‘x) ↔ xFy)) |
8 | 7 | rexbidva 2632 | . . . . . . 7 ⊢ ((Fun F ∧ A ⊆ dom F) → (∃x ∈ A y = (F ‘x) ↔ ∃x ∈ A xFy)) |
9 | elima 4755 | . . . . . . 7 ⊢ (y ∈ (F “ A) ↔ ∃x ∈ A xFy) | |
10 | 8, 9 | syl6rbbr 255 | . . . . . 6 ⊢ ((Fun F ∧ A ⊆ dom F) → (y ∈ (F “ A) ↔ ∃x ∈ A y = (F ‘x))) |
11 | 10 | imbi1d 308 | . . . . 5 ⊢ ((Fun F ∧ A ⊆ dom F) → ((y ∈ (F “ A) → y ∈ B) ↔ (∃x ∈ A y = (F ‘x) → y ∈ B))) |
12 | r19.23v 2731 | . . . . 5 ⊢ (∀x ∈ A (y = (F ‘x) → y ∈ B) ↔ (∃x ∈ A y = (F ‘x) → y ∈ B)) | |
13 | 11, 12 | syl6bbr 254 | . . . 4 ⊢ ((Fun F ∧ A ⊆ dom F) → ((y ∈ (F “ A) → y ∈ B) ↔ ∀x ∈ A (y = (F ‘x) → y ∈ B))) |
14 | 13 | albidv 1625 | . . 3 ⊢ ((Fun F ∧ A ⊆ dom F) → (∀y(y ∈ (F “ A) → y ∈ B) ↔ ∀y∀x ∈ A (y = (F ‘x) → y ∈ B))) |
15 | ralcom4 2878 | . . . 4 ⊢ (∀x ∈ A ∀y(y = (F ‘x) → y ∈ B) ↔ ∀y∀x ∈ A (y = (F ‘x) → y ∈ B)) | |
16 | fvex 5340 | . . . . . 6 ⊢ (F ‘x) ∈ V | |
17 | eleq1 2413 | . . . . . 6 ⊢ (y = (F ‘x) → (y ∈ B ↔ (F ‘x) ∈ B)) | |
18 | 16, 17 | ceqsalv 2886 | . . . . 5 ⊢ (∀y(y = (F ‘x) → y ∈ B) ↔ (F ‘x) ∈ B) |
19 | 18 | ralbii 2639 | . . . 4 ⊢ (∀x ∈ A ∀y(y = (F ‘x) → y ∈ B) ↔ ∀x ∈ A (F ‘x) ∈ B) |
20 | 15, 19 | bitr3i 242 | . . 3 ⊢ (∀y∀x ∈ A (y = (F ‘x) → y ∈ B) ↔ ∀x ∈ A (F ‘x) ∈ B) |
21 | 14, 20 | syl6bb 252 | . 2 ⊢ ((Fun F ∧ A ⊆ dom F) → (∀y(y ∈ (F “ A) → y ∈ B) ↔ ∀x ∈ A (F ‘x) ∈ B)) |
22 | 1, 21 | syl5bb 248 | 1 ⊢ ((Fun F ∧ A ⊆ dom F) → ((F “ A) ⊆ B ↔ ∀x ∈ A (F ‘x) ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 ⊆ wss 3258 class class class wbr 4640 “ cima 4723 dom cdm 4773 Fun wfun 4776 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-fv 4796 |
This theorem is referenced by: funimass3 5405 funimass5 5406 funconstss 5407 funimassov 5610 |
Copyright terms: Public domain | W3C validator |