![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > funimass4 | GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
funimass4 | ⊢ ((Fun F ∧ A ⊆ dom F) → ((F “ A) ⊆ B ↔ ∀x ∈ A (F ‘x) ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3262 | . 2 ⊢ ((F “ A) ⊆ B ↔ ∀y(y ∈ (F “ A) → y ∈ B)) | |
2 | ssel2 3268 | . . . . . . . . . 10 ⊢ ((A ⊆ dom F ∧ x ∈ A) → x ∈ dom F) | |
3 | eqcom 2355 | . . . . . . . . . . 11 ⊢ (y = (F ‘x) ↔ (F ‘x) = y) | |
4 | funbrfvb 5360 | . . . . . . . . . . 11 ⊢ ((Fun F ∧ x ∈ dom F) → ((F ‘x) = y ↔ xFy)) | |
5 | 3, 4 | syl5bb 248 | . . . . . . . . . 10 ⊢ ((Fun F ∧ x ∈ dom F) → (y = (F ‘x) ↔ xFy)) |
6 | 2, 5 | sylan2 460 | . . . . . . . . 9 ⊢ ((Fun F ∧ (A ⊆ dom F ∧ x ∈ A)) → (y = (F ‘x) ↔ xFy)) |
7 | 6 | anassrs 629 | . . . . . . . 8 ⊢ (((Fun F ∧ A ⊆ dom F) ∧ x ∈ A) → (y = (F ‘x) ↔ xFy)) |
8 | 7 | rexbidva 2631 | . . . . . . 7 ⊢ ((Fun F ∧ A ⊆ dom F) → (∃x ∈ A y = (F ‘x) ↔ ∃x ∈ A xFy)) |
9 | elima 4754 | . . . . . . 7 ⊢ (y ∈ (F “ A) ↔ ∃x ∈ A xFy) | |
10 | 8, 9 | syl6rbbr 255 | . . . . . 6 ⊢ ((Fun F ∧ A ⊆ dom F) → (y ∈ (F “ A) ↔ ∃x ∈ A y = (F ‘x))) |
11 | 10 | imbi1d 308 | . . . . 5 ⊢ ((Fun F ∧ A ⊆ dom F) → ((y ∈ (F “ A) → y ∈ B) ↔ (∃x ∈ A y = (F ‘x) → y ∈ B))) |
12 | r19.23v 2730 | . . . . 5 ⊢ (∀x ∈ A (y = (F ‘x) → y ∈ B) ↔ (∃x ∈ A y = (F ‘x) → y ∈ B)) | |
13 | 11, 12 | syl6bbr 254 | . . . 4 ⊢ ((Fun F ∧ A ⊆ dom F) → ((y ∈ (F “ A) → y ∈ B) ↔ ∀x ∈ A (y = (F ‘x) → y ∈ B))) |
14 | 13 | albidv 1625 | . . 3 ⊢ ((Fun F ∧ A ⊆ dom F) → (∀y(y ∈ (F “ A) → y ∈ B) ↔ ∀y∀x ∈ A (y = (F ‘x) → y ∈ B))) |
15 | ralcom4 2877 | . . . 4 ⊢ (∀x ∈ A ∀y(y = (F ‘x) → y ∈ B) ↔ ∀y∀x ∈ A (y = (F ‘x) → y ∈ B)) | |
16 | fvex 5339 | . . . . . 6 ⊢ (F ‘x) ∈ V | |
17 | eleq1 2413 | . . . . . 6 ⊢ (y = (F ‘x) → (y ∈ B ↔ (F ‘x) ∈ B)) | |
18 | 16, 17 | ceqsalv 2885 | . . . . 5 ⊢ (∀y(y = (F ‘x) → y ∈ B) ↔ (F ‘x) ∈ B) |
19 | 18 | ralbii 2638 | . . . 4 ⊢ (∀x ∈ A ∀y(y = (F ‘x) → y ∈ B) ↔ ∀x ∈ A (F ‘x) ∈ B) |
20 | 15, 19 | bitr3i 242 | . . 3 ⊢ (∀y∀x ∈ A (y = (F ‘x) → y ∈ B) ↔ ∀x ∈ A (F ‘x) ∈ B) |
21 | 14, 20 | syl6bb 252 | . 2 ⊢ ((Fun F ∧ A ⊆ dom F) → (∀y(y ∈ (F “ A) → y ∈ B) ↔ ∀x ∈ A (F ‘x) ∈ B)) |
22 | 1, 21 | syl5bb 248 | 1 ⊢ ((Fun F ∧ A ⊆ dom F) → ((F “ A) ⊆ B ↔ ∀x ∈ A (F ‘x) ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∀wral 2614 ∃wrex 2615 ⊆ wss 3257 class class class wbr 4639 “ cima 4722 dom cdm 4772 Fun wfun 4775 ‘cfv 4781 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-fv 4795 |
This theorem is referenced by: funimass3 5404 funimass5 5405 funconstss 5406 funimassov 5609 |
Copyright terms: Public domain | W3C validator |