Step | Hyp | Ref
| Expression |
1 | | elun 3221 |
. . . . . 6
⊢ (y ∈ (B ∪ C)
↔ (y ∈ B ∨ y ∈ C)) |
2 | 1 | anbi2i 675 |
. . . . 5
⊢ ((x ∈ A ∧ y ∈ (B ∪ C))
↔ (x ∈ A ∧ (y ∈ B ∨ y ∈ C))) |
3 | | andi 837 |
. . . . 5
⊢ ((x ∈ A ∧ (y ∈ B ∨ y ∈ C)) ↔ ((x
∈ A ∧ y ∈ B) ∨ (x ∈ A ∧ y ∈ C))) |
4 | 2, 3 | bitri 240 |
. . . 4
⊢ ((x ∈ A ∧ y ∈ (B ∪ C))
↔ ((x ∈ A ∧ y ∈ B) ∨ (x ∈ A ∧ y ∈ C))) |
5 | 4 | opabbii 4627 |
. . 3
⊢ {〈x, y〉 ∣ (x ∈ A ∧ y ∈ (B ∪
C))} = {〈x, y〉 ∣ ((x ∈ A ∧ y ∈ B) ∨ (x ∈ A ∧ y ∈ C))} |
6 | | unopab 4639 |
. . 3
⊢ ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ B)} ∪
{〈x,
y〉 ∣ (x ∈ A ∧ y ∈ C)}) = {〈x, y〉 ∣ ((x ∈ A ∧ y ∈ B) ∨ (x ∈ A ∧ y ∈ C))} |
7 | 5, 6 | eqtr4i 2376 |
. 2
⊢ {〈x, y〉 ∣ (x ∈ A ∧ y ∈ (B ∪
C))} = ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ B)} ∪
{〈x,
y〉 ∣ (x ∈ A ∧ y ∈ C)}) |
8 | | df-xp 4785 |
. 2
⊢ (A × (B
∪ C)) = {〈x, y〉 ∣ (x ∈ A ∧ y ∈ (B ∪
C))} |
9 | | df-xp 4785 |
. . 3
⊢ (A × B) =
{〈x,
y〉 ∣ (x ∈ A ∧ y ∈ B)} |
10 | | df-xp 4785 |
. . 3
⊢ (A × C) =
{〈x,
y〉 ∣ (x ∈ A ∧ y ∈ C)} |
11 | 9, 10 | uneq12i 3417 |
. 2
⊢ ((A × B)
∪ (A × C)) = ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ B)} ∪ {〈x, y〉 ∣ (x ∈ A ∧ y ∈ C)}) |
12 | 7, 8, 11 | 3eqtr4i 2383 |
1
⊢ (A × (B
∪ C)) = ((A × B)
∪ (A × C)) |