New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > indi | GIF version |
Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
indi | ⊢ (A ∩ (B ∪ C)) = ((A ∩ B) ∪ (A ∩ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 837 | . . . 4 ⊢ ((x ∈ A ∧ (x ∈ B ∨ x ∈ C)) ↔ ((x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C))) | |
2 | elin 3220 | . . . . 5 ⊢ (x ∈ (A ∩ B) ↔ (x ∈ A ∧ x ∈ B)) | |
3 | elin 3220 | . . . . 5 ⊢ (x ∈ (A ∩ C) ↔ (x ∈ A ∧ x ∈ C)) | |
4 | 2, 3 | orbi12i 507 | . . . 4 ⊢ ((x ∈ (A ∩ B) ∨ x ∈ (A ∩ C)) ↔ ((x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C))) |
5 | 1, 4 | bitr4i 243 | . . 3 ⊢ ((x ∈ A ∧ (x ∈ B ∨ x ∈ C)) ↔ (x ∈ (A ∩ B) ∨ x ∈ (A ∩ C))) |
6 | elun 3221 | . . . 4 ⊢ (x ∈ (B ∪ C) ↔ (x ∈ B ∨ x ∈ C)) | |
7 | 6 | anbi2i 675 | . . 3 ⊢ ((x ∈ A ∧ x ∈ (B ∪ C)) ↔ (x ∈ A ∧ (x ∈ B ∨ x ∈ C))) |
8 | elun 3221 | . . 3 ⊢ (x ∈ ((A ∩ B) ∪ (A ∩ C)) ↔ (x ∈ (A ∩ B) ∨ x ∈ (A ∩ C))) | |
9 | 5, 7, 8 | 3bitr4i 268 | . 2 ⊢ ((x ∈ A ∧ x ∈ (B ∪ C)) ↔ x ∈ ((A ∩ B) ∪ (A ∩ C))) |
10 | 9 | ineqri 3450 | 1 ⊢ (A ∩ (B ∪ C)) = ((A ∩ B) ∪ (A ∩ C)) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∪ cun 3208 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 |
This theorem is referenced by: indir 3504 difindi 3510 undisj2 3604 disjssun 3609 difdifdir 3638 diftpsn3 3850 addcass 4416 resundi 4982 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |