NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfrnf GIF version

Theorem dfrnf 4963
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfrnf.1 xA
dfrnf.2 yA
Assertion
Ref Expression
dfrnf ran A = {y x xAy}
Distinct variable group:   x,y
Allowed substitution hints:   A(x,y)

Proof of Theorem dfrnf
Dummy variables w v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 4903 . 2 ran A = {w v vAw}
2 nfcv 2490 . . . . 5 xv
3 dfrnf.1 . . . . 5 xA
4 nfcv 2490 . . . . 5 xw
52, 3, 4nfbr 4684 . . . 4 x vAw
6 nfv 1619 . . . 4 v xAw
7 breq1 4643 . . . 4 (v = x → (vAwxAw))
85, 6, 7cbvex 1985 . . 3 (v vAwx xAw)
98abbii 2466 . 2 {w v vAw} = {w x xAw}
10 nfcv 2490 . . . . 5 yx
11 dfrnf.2 . . . . 5 yA
12 nfcv 2490 . . . . 5 yw
1310, 11, 12nfbr 4684 . . . 4 y xAw
1413nfex 1843 . . 3 yx xAw
15 nfv 1619 . . 3 wx xAy
16 breq2 4644 . . . 4 (w = y → (xAwxAy))
1716exbidv 1626 . . 3 (w = y → (x xAwx xAy))
1814, 15, 17cbvab 2472 . 2 {w x xAw} = {y x xAy}
191, 9, 183eqtri 2377 1 ran A = {y x xAy}
Colors of variables: wff setvar class
Syntax hints:  wex 1541   = wceq 1642  {cab 2339  wnfc 2477   class class class wbr 4640  ran crn 4774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-br 4641  df-ima 4728  df-rn 4787
This theorem is referenced by:  rnopab  4968
  Copyright terms: Public domain W3C validator