| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ceqsex2 | GIF version | ||
| Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
| Ref | Expression |
|---|---|
| ceqsex2.1 | ⊢ Ⅎxψ |
| ceqsex2.2 | ⊢ Ⅎyχ |
| ceqsex2.3 | ⊢ A ∈ V |
| ceqsex2.4 | ⊢ B ∈ V |
| ceqsex2.5 | ⊢ (x = A → (φ ↔ ψ)) |
| ceqsex2.6 | ⊢ (y = B → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| ceqsex2 | ⊢ (∃x∃y(x = A ∧ y = B ∧ φ) ↔ χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 938 | . . . . 5 ⊢ ((x = A ∧ y = B ∧ φ) ↔ (x = A ∧ (y = B ∧ φ))) | |
| 2 | 1 | exbii 1582 | . . . 4 ⊢ (∃y(x = A ∧ y = B ∧ φ) ↔ ∃y(x = A ∧ (y = B ∧ φ))) |
| 3 | 19.42v 1905 | . . . 4 ⊢ (∃y(x = A ∧ (y = B ∧ φ)) ↔ (x = A ∧ ∃y(y = B ∧ φ))) | |
| 4 | 2, 3 | bitri 240 | . . 3 ⊢ (∃y(x = A ∧ y = B ∧ φ) ↔ (x = A ∧ ∃y(y = B ∧ φ))) |
| 5 | 4 | exbii 1582 | . 2 ⊢ (∃x∃y(x = A ∧ y = B ∧ φ) ↔ ∃x(x = A ∧ ∃y(y = B ∧ φ))) |
| 6 | nfv 1619 | . . . . 5 ⊢ Ⅎx y = B | |
| 7 | ceqsex2.1 | . . . . 5 ⊢ Ⅎxψ | |
| 8 | 6, 7 | nfan 1824 | . . . 4 ⊢ Ⅎx(y = B ∧ ψ) |
| 9 | 8 | nfex 1843 | . . 3 ⊢ Ⅎx∃y(y = B ∧ ψ) |
| 10 | ceqsex2.3 | . . 3 ⊢ A ∈ V | |
| 11 | ceqsex2.5 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
| 12 | 11 | anbi2d 684 | . . . 4 ⊢ (x = A → ((y = B ∧ φ) ↔ (y = B ∧ ψ))) |
| 13 | 12 | exbidv 1626 | . . 3 ⊢ (x = A → (∃y(y = B ∧ φ) ↔ ∃y(y = B ∧ ψ))) |
| 14 | 9, 10, 13 | ceqsex 2894 | . 2 ⊢ (∃x(x = A ∧ ∃y(y = B ∧ φ)) ↔ ∃y(y = B ∧ ψ)) |
| 15 | ceqsex2.2 | . . 3 ⊢ Ⅎyχ | |
| 16 | ceqsex2.4 | . . 3 ⊢ B ∈ V | |
| 17 | ceqsex2.6 | . . 3 ⊢ (y = B → (ψ ↔ χ)) | |
| 18 | 15, 16, 17 | ceqsex 2894 | . 2 ⊢ (∃y(y = B ∧ ψ) ↔ χ) |
| 19 | 5, 14, 18 | 3bitri 262 | 1 ⊢ (∃x∃y(x = A ∧ y = B ∧ φ) ↔ χ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
| This theorem is referenced by: ceqsex2v 2897 |
| Copyright terms: Public domain | W3C validator |