NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  incompl GIF version

Theorem incompl 4074
Description: Intersection with complement. (Contributed by SF, 2-Jan-2018.)
Assertion
Ref Expression
incompl (A ∩ ∼ A) =

Proof of Theorem incompl
StepHypRef Expression
1 df-in 3214 . 2 (A ∩ ∼ A) = ∼ (A ⩃ ∼ A)
2 nincompl 4073 . . 3 (A ⩃ ∼ A) = V
32compleqi 3245 . 2 ∼ (A ⩃ ∼ A) = ∼ V
4 complV 4071 . 2 ∼ V =
51, 3, 43eqtri 2377 1 (A ∩ ∼ A) =
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  Vcvv 2860  cnin 3205  ccompl 3206  cin 3209  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552
This theorem is referenced by:  inindif  4076  nnsucelrlem3  4427  vfintle  4547  vfin1cltv  4548  fnfullfun  5859  fvfullfun  5865  sbthlem1  6204
  Copyright terms: Public domain W3C validator