| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > incompl | GIF version | ||
| Description: Intersection with complement. (Contributed by SF, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| incompl | ⊢ (A ∩ ∼ A) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in 3214 | . 2 ⊢ (A ∩ ∼ A) = ∼ (A ⩃ ∼ A) | |
| 2 | nincompl 4073 | . . 3 ⊢ (A ⩃ ∼ A) = V | |
| 3 | 2 | compleqi 3245 | . 2 ⊢ ∼ (A ⩃ ∼ A) = ∼ V |
| 4 | complV 4071 | . 2 ⊢ ∼ V = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2377 | 1 ⊢ (A ∩ ∼ A) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1642 Vcvv 2860 ⩃ cnin 3205 ∼ ccompl 3206 ∩ cin 3209 ∅c0 3551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 |
| This theorem is referenced by: inindif 4076 nnsucelrlem3 4427 vfintle 4547 vfin1cltv 4548 fnfullfun 5859 fvfullfun 5865 sbthlem1 6204 |
| Copyright terms: Public domain | W3C validator |