New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbnestg GIF version

Theorem csbnestg 3186
 Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
Assertion
Ref Expression
csbnestg (A V[A / x][B / y]C = [[A / x]B / y]C)
Distinct variable group:   x,C
Allowed substitution hints:   A(x,y)   B(x,y)   C(y)   V(x,y)

Proof of Theorem csbnestg
StepHypRef Expression
1 nfcv 2489 . . 3 xC
21ax-gen 1546 . 2 yxC
3 csbnestgf 3184 . 2 ((A V yxC) → [A / x][B / y]C = [[A / x]B / y]C)
42, 3mpan2 652 1 (A V[A / x][B / y]C = [[A / x]B / y]C)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1540   = wceq 1642   ∈ wcel 1710  Ⅎwnfc 2476  [csb 3136 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-sbc 3047  df-csb 3137 This theorem is referenced by:  csbnestgOLD  3187  csbco3g  3193
 Copyright terms: Public domain W3C validator