NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbnestg GIF version

Theorem csbnestg 3187
Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
Assertion
Ref Expression
csbnestg (A V[A / x][B / y]C = [[A / x]B / y]C)
Distinct variable group:   x,C
Allowed substitution hints:   A(x,y)   B(x,y)   C(y)   V(x,y)

Proof of Theorem csbnestg
StepHypRef Expression
1 nfcv 2490 . . 3 xC
21ax-gen 1546 . 2 yxC
3 csbnestgf 3185 . 2 ((A V yxC) → [A / x][B / y]C = [[A / x]B / y]C)
42, 3mpan2 652 1 (A V[A / x][B / y]C = [[A / x]B / y]C)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   = wceq 1642   wcel 1710  wnfc 2477  [csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by:  csbnestgOLD  3188  csbco3g  3194
  Copyright terms: Public domain W3C validator