New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqerlem | GIF version |
Description: Lemma for eqer 5962. (Contributed by set.mm contributors, 17-Mar-2008.) |
Ref | Expression |
---|---|
eqer.1 | ⊢ (x = y → A = B) |
eqer.2 | ⊢ R = {〈x, y〉 ∣ A = B} |
Ref | Expression |
---|---|
eqerlem | ⊢ (zRw ↔ [z / x]A = [w / x]A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . . 4 ⊢ R = {〈x, y〉 ∣ A = B} | |
2 | 1 | brabsb 4699 | . . 3 ⊢ (zRw ↔ [̣z / x]̣[̣w / y]̣A = B) |
3 | sbccom 3118 | . . 3 ⊢ ([̣z / x]̣[̣w / y]̣A = B ↔ [̣w / y]̣[̣z / x]̣A = B) | |
4 | 2, 3 | bitri 240 | . 2 ⊢ (zRw ↔ [̣w / y]̣[̣z / x]̣A = B) |
5 | vex 2863 | . . . . 5 ⊢ z ∈ V | |
6 | sbceq1g 3157 | . . . . 5 ⊢ (z ∈ V → ([̣z / x]̣A = B ↔ [z / x]A = B)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ([̣z / x]̣A = B ↔ [z / x]A = B) |
8 | vex 2863 | . . . . . 6 ⊢ y ∈ V | |
9 | nfcv 2490 | . . . . . 6 ⊢ ℲxB | |
10 | eqer.1 | . . . . . 6 ⊢ (x = y → A = B) | |
11 | 8, 9, 10 | csbief 3178 | . . . . 5 ⊢ [y / x]A = B |
12 | 11 | eqeq2i 2363 | . . . 4 ⊢ ([z / x]A = [y / x]A ↔ [z / x]A = B) |
13 | 7, 12 | bitr4i 243 | . . 3 ⊢ ([̣z / x]̣A = B ↔ [z / x]A = [y / x]A) |
14 | 13 | sbcbii 3102 | . 2 ⊢ ([̣w / y]̣[̣z / x]̣A = B ↔ [̣w / y]̣[z / x]A = [y / x]A) |
15 | vex 2863 | . . . 4 ⊢ w ∈ V | |
16 | sbceq2g 3159 | . . . 4 ⊢ (w ∈ V → ([̣w / y]̣[z / x]A = [y / x]A ↔ [z / x]A = [w / y][y / x]A)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ ([̣w / y]̣[z / x]A = [y / x]A ↔ [z / x]A = [w / y][y / x]A) |
18 | csbco 3146 | . . . 4 ⊢ [w / y][y / x]A = [w / x]A | |
19 | 18 | eqeq2i 2363 | . . 3 ⊢ ([z / x]A = [w / y][y / x]A ↔ [z / x]A = [w / x]A) |
20 | 17, 19 | bitri 240 | . 2 ⊢ ([̣w / y]̣[z / x]A = [y / x]A ↔ [z / x]A = [w / x]A) |
21 | 4, 14, 20 | 3bitri 262 | 1 ⊢ (zRw ↔ [z / x]A = [w / x]A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 Vcvv 2860 [̣wsbc 3047 [csb 3137 {copab 4623 class class class wbr 4640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 |
This theorem is referenced by: eqer 5962 |
Copyright terms: Public domain | W3C validator |