New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbovg | GIF version |
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
csbovg | ⊢ (A ∈ D → [A / x](BFC) = ([A / x]B[A / x]F[A / x]C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3140 | . . 3 ⊢ (y = A → [y / x](BFC) = [A / x](BFC)) | |
2 | csbeq1 3140 | . . . 4 ⊢ (y = A → [y / x]F = [A / x]F) | |
3 | csbeq1 3140 | . . . 4 ⊢ (y = A → [y / x]B = [A / x]B) | |
4 | csbeq1 3140 | . . . 4 ⊢ (y = A → [y / x]C = [A / x]C) | |
5 | 2, 3, 4 | oveq123d 5544 | . . 3 ⊢ (y = A → ([y / x]B[y / x]F[y / x]C) = ([A / x]B[A / x]F[A / x]C)) |
6 | 1, 5 | eqeq12d 2367 | . 2 ⊢ (y = A → ([y / x](BFC) = ([y / x]B[y / x]F[y / x]C) ↔ [A / x](BFC) = ([A / x]B[A / x]F[A / x]C))) |
7 | vex 2863 | . . 3 ⊢ y ∈ V | |
8 | nfcsb1v 3169 | . . . 4 ⊢ Ⅎx[y / x]B | |
9 | nfcsb1v 3169 | . . . 4 ⊢ Ⅎx[y / x]F | |
10 | nfcsb1v 3169 | . . . 4 ⊢ Ⅎx[y / x]C | |
11 | 8, 9, 10 | nfov 5546 | . . 3 ⊢ Ⅎx([y / x]B[y / x]F[y / x]C) |
12 | csbeq1a 3145 | . . . 4 ⊢ (x = y → F = [y / x]F) | |
13 | csbeq1a 3145 | . . . 4 ⊢ (x = y → B = [y / x]B) | |
14 | csbeq1a 3145 | . . . 4 ⊢ (x = y → C = [y / x]C) | |
15 | 12, 13, 14 | oveq123d 5544 | . . 3 ⊢ (x = y → (BFC) = ([y / x]B[y / x]F[y / x]C)) |
16 | 7, 11, 15 | csbief 3178 | . 2 ⊢ [y / x](BFC) = ([y / x]B[y / x]F[y / x]C) |
17 | 6, 16 | vtoclg 2915 | 1 ⊢ (A ∈ D → [A / x](BFC) = ([A / x]B[A / x]F[A / x]C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 [csb 3137 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 df-ov 5527 |
This theorem is referenced by: csbov12g 5554 |
Copyright terms: Public domain | W3C validator |