New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcnestg | GIF version |
Description: Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
sbcnestg | ⊢ (A ∈ V → ([̣A / x]̣[̣B / y]̣φ ↔ [̣[A / x]B / y]̣φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . 3 ⊢ Ⅎxφ | |
2 | 1 | ax-gen 1546 | . 2 ⊢ ∀yℲxφ |
3 | sbcnestgf 3184 | . 2 ⊢ ((A ∈ V ∧ ∀yℲxφ) → ([̣A / x]̣[̣B / y]̣φ ↔ [̣[A / x]B / y]̣φ)) | |
4 | 2, 3 | mpan2 652 | 1 ⊢ (A ∈ V → ([̣A / x]̣[̣B / y]̣φ ↔ [̣[A / x]B / y]̣φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 ∈ wcel 1710 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: sbcco3g 3192 |
Copyright terms: Public domain | W3C validator |