NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcnestg GIF version

Theorem sbcnestg 3186
Description: Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
sbcnestg (A V → ([̣A / x]̣[̣B / yφ ↔ [̣[A / x]B / yφ))
Distinct variable group:   φ,x
Allowed substitution hints:   φ(y)   A(x,y)   B(x,y)   V(x,y)

Proof of Theorem sbcnestg
StepHypRef Expression
1 nfv 1619 . . 3 xφ
21ax-gen 1546 . 2 yxφ
3 sbcnestgf 3184 . 2 ((A V yxφ) → ([̣A / x]̣[̣B / yφ ↔ [̣[A / x]B / yφ))
42, 3mpan2 652 1 (A V → ([̣A / x]̣[̣B / yφ ↔ [̣[A / x]B / yφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wnf 1544   wcel 1710  wsbc 3047  [csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by:  sbcco3g  3192
  Copyright terms: Public domain W3C validator