New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfun2 | GIF version |
Description: An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 3492 and dfss4 3490 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation ∖ (class difference). (Contributed by NM, 10-Jun-2004.) |
Ref | Expression |
---|---|
dfun2 | ⊢ (A ∪ B) = (V ∖ ((V ∖ A) ∖ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . . . . 7 ⊢ x ∈ V | |
2 | eldif 3222 | . . . . . . 7 ⊢ (x ∈ (V ∖ A) ↔ (x ∈ V ∧ ¬ x ∈ A)) | |
3 | 1, 2 | mpbiran 884 | . . . . . 6 ⊢ (x ∈ (V ∖ A) ↔ ¬ x ∈ A) |
4 | 3 | anbi1i 676 | . . . . 5 ⊢ ((x ∈ (V ∖ A) ∧ ¬ x ∈ B) ↔ (¬ x ∈ A ∧ ¬ x ∈ B)) |
5 | eldif 3222 | . . . . 5 ⊢ (x ∈ ((V ∖ A) ∖ B) ↔ (x ∈ (V ∖ A) ∧ ¬ x ∈ B)) | |
6 | ioran 476 | . . . . 5 ⊢ (¬ (x ∈ A ∨ x ∈ B) ↔ (¬ x ∈ A ∧ ¬ x ∈ B)) | |
7 | 4, 5, 6 | 3bitr4i 268 | . . . 4 ⊢ (x ∈ ((V ∖ A) ∖ B) ↔ ¬ (x ∈ A ∨ x ∈ B)) |
8 | 7 | con2bii 322 | . . 3 ⊢ ((x ∈ A ∨ x ∈ B) ↔ ¬ x ∈ ((V ∖ A) ∖ B)) |
9 | eldif 3222 | . . . 4 ⊢ (x ∈ (V ∖ ((V ∖ A) ∖ B)) ↔ (x ∈ V ∧ ¬ x ∈ ((V ∖ A) ∖ B))) | |
10 | 1, 9 | mpbiran 884 | . . 3 ⊢ (x ∈ (V ∖ ((V ∖ A) ∖ B)) ↔ ¬ x ∈ ((V ∖ A) ∖ B)) |
11 | 8, 10 | bitr4i 243 | . 2 ⊢ ((x ∈ A ∨ x ∈ B) ↔ x ∈ (V ∖ ((V ∖ A) ∖ B))) |
12 | 11 | uneqri 3407 | 1 ⊢ (A ∪ B) = (V ∖ ((V ∖ A) ∖ B)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∖ cdif 3207 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 |
This theorem is referenced by: dfun3 3494 dfin3 3495 |
Copyright terms: Public domain | W3C validator |