![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > dfun2 | GIF version |
Description: An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 3491 and dfss4 3489 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation ∖ (class difference). (Contributed by NM, 10-Jun-2004.) |
Ref | Expression |
---|---|
dfun2 | ⊢ (A ∪ B) = (V ∖ ((V ∖ A) ∖ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2862 | . . . . . . 7 ⊢ x ∈ V | |
2 | eldif 3221 | . . . . . . 7 ⊢ (x ∈ (V ∖ A) ↔ (x ∈ V ∧ ¬ x ∈ A)) | |
3 | 1, 2 | mpbiran 884 | . . . . . 6 ⊢ (x ∈ (V ∖ A) ↔ ¬ x ∈ A) |
4 | 3 | anbi1i 676 | . . . . 5 ⊢ ((x ∈ (V ∖ A) ∧ ¬ x ∈ B) ↔ (¬ x ∈ A ∧ ¬ x ∈ B)) |
5 | eldif 3221 | . . . . 5 ⊢ (x ∈ ((V ∖ A) ∖ B) ↔ (x ∈ (V ∖ A) ∧ ¬ x ∈ B)) | |
6 | ioran 476 | . . . . 5 ⊢ (¬ (x ∈ A ∨ x ∈ B) ↔ (¬ x ∈ A ∧ ¬ x ∈ B)) | |
7 | 4, 5, 6 | 3bitr4i 268 | . . . 4 ⊢ (x ∈ ((V ∖ A) ∖ B) ↔ ¬ (x ∈ A ∨ x ∈ B)) |
8 | 7 | con2bii 322 | . . 3 ⊢ ((x ∈ A ∨ x ∈ B) ↔ ¬ x ∈ ((V ∖ A) ∖ B)) |
9 | eldif 3221 | . . . 4 ⊢ (x ∈ (V ∖ ((V ∖ A) ∖ B)) ↔ (x ∈ V ∧ ¬ x ∈ ((V ∖ A) ∖ B))) | |
10 | 1, 9 | mpbiran 884 | . . 3 ⊢ (x ∈ (V ∖ ((V ∖ A) ∖ B)) ↔ ¬ x ∈ ((V ∖ A) ∖ B)) |
11 | 8, 10 | bitr4i 243 | . 2 ⊢ ((x ∈ A ∨ x ∈ B) ↔ x ∈ (V ∖ ((V ∖ A) ∖ B))) |
12 | 11 | uneqri 3406 | 1 ⊢ (A ∪ B) = (V ∖ ((V ∖ A) ∖ B)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ∖ cdif 3206 ∪ cun 3207 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 |
This theorem is referenced by: dfun3 3493 dfin3 3494 |
Copyright terms: Public domain | W3C validator |