NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfin2 GIF version

Theorem dfin2 3492
Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 3491. Another version is given by dfin4 3496. (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfin2 (AB) = (A (V B))

Proof of Theorem dfin2
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . . . 6 x V
2 eldif 3222 . . . . . 6 (x (V B) ↔ (x V ¬ x B))
31, 2mpbiran 884 . . . . 5 (x (V B) ↔ ¬ x B)
43con2bii 322 . . . 4 (x B ↔ ¬ x (V B))
54anbi2i 675 . . 3 ((x A x B) ↔ (x A ¬ x (V B)))
6 eldif 3222 . . 3 (x (A (V B)) ↔ (x A ¬ x (V B)))
75, 6bitr4i 243 . 2 ((x A x B) ↔ x (A (V B)))
87ineqri 3450 1 (AB) = (A (V B))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wa 358   = wceq 1642   wcel 1710  Vcvv 2860   cdif 3207  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216
This theorem is referenced by:  dfun3  3494  dfin3  3495  invdif  3497  difundi  3508  difindi  3510
  Copyright terms: Public domain W3C validator