New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfin2 GIF version

Theorem dfin2 3491
 Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 3490. Another version is given by dfin4 3495. (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfin2 (AB) = (A (V B))

Proof of Theorem dfin2
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 vex 2862 . . . . . 6 x V
2 eldif 3221 . . . . . 6 (x (V B) ↔ (x V ¬ x B))
31, 2mpbiran 884 . . . . 5 (x (V B) ↔ ¬ x B)
43con2bii 322 . . . 4 (x B ↔ ¬ x (V B))
54anbi2i 675 . . 3 ((x A x B) ↔ (x A ¬ x (V B)))
6 eldif 3221 . . 3 (x (A (V B)) ↔ (x A ¬ x (V B)))
75, 6bitr4i 243 . 2 ((x A x B) ↔ x (A (V B)))
87ineqri 3449 1 (AB) = (A (V B))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 358   = wceq 1642   ∈ wcel 1710  Vcvv 2859   ∖ cdif 3206   ∩ cin 3208 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-dif 3215 This theorem is referenced by:  dfun3  3493  dfin3  3494  invdif  3496  difundi  3507  difindi  3509
 Copyright terms: Public domain W3C validator