| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > phi011 | GIF version | ||
| Description: ( Phi A ∪ {0c}) is one-to-one. Theorem X.2.4 of [Rosser] p. 282. (Contributed by SF, 3-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| phi011 | ⊢ (A = B ↔ ( Phi A ∪ {0c}) = ( Phi B ∪ {0c})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | phi11 4597 | . 2 ⊢ (A = B ↔ Phi A = Phi B) | |
| 2 | uneq1 3412 | . . 3 ⊢ ( Phi A = Phi B → ( Phi A ∪ {0c}) = ( Phi B ∪ {0c})) | |
| 3 | phi011lem1 4599 | . . . 4 ⊢ (( Phi A ∪ {0c}) = ( Phi B ∪ {0c}) → Phi A ⊆ Phi B) | |
| 4 | phi011lem1 4599 | . . . . 5 ⊢ (( Phi B ∪ {0c}) = ( Phi A ∪ {0c}) → Phi B ⊆ Phi A) | |
| 5 | 4 | eqcoms 2356 | . . . 4 ⊢ (( Phi A ∪ {0c}) = ( Phi B ∪ {0c}) → Phi B ⊆ Phi A) | 
| 6 | 3, 5 | eqssd 3290 | . . 3 ⊢ (( Phi A ∪ {0c}) = ( Phi B ∪ {0c}) → Phi A = Phi B) | 
| 7 | 2, 6 | impbii 180 | . 2 ⊢ ( Phi A = Phi B ↔ ( Phi A ∪ {0c}) = ( Phi B ∪ {0c})) | 
| 8 | 1, 7 | bitri 240 | 1 ⊢ (A = B ↔ ( Phi A ∪ {0c}) = ( Phi B ∪ {0c})) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 176 = wceq 1642 ∪ cun 3208 ⊆ wss 3258 {csn 3738 0cc0c 4375 Phi cphi 4563 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 | 
| This theorem is referenced by: proj2op 4602 | 
| Copyright terms: Public domain | W3C validator |