NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  copsex2g GIF version

Theorem copsex2g 4610
Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.)
Hypothesis
Ref Expression
copsex2g.1 ((x = A y = B) → (φψ))
Assertion
Ref Expression
copsex2g ((A V B W) → (xy(A, B = x, y φ) ↔ ψ))
Distinct variable groups:   x,y,ψ   x,A,y   x,B,y
Allowed substitution hints:   φ(x,y)   V(x,y)   W(x,y)

Proof of Theorem copsex2g
StepHypRef Expression
1 elisset 2870 . 2 (A Vx x = A)
2 elisset 2870 . 2 (B Wy y = B)
3 eeanv 1913 . . 3 (xy(x = A y = B) ↔ (x x = A y y = B))
4 nfe1 1732 . . . . 5 xxy(A, B = x, y φ)
5 nfv 1619 . . . . 5 xψ
64, 5nfbi 1834 . . . 4 x(xy(A, B = x, y φ) ↔ ψ)
7 nfe1 1732 . . . . . . 7 yy(A, B = x, y φ)
87nfex 1843 . . . . . 6 yxy(A, B = x, y φ)
9 nfv 1619 . . . . . 6 yψ
108, 9nfbi 1834 . . . . 5 y(xy(A, B = x, y φ) ↔ ψ)
11 opeq12 4581 . . . . . . 7 ((x = A y = B) → x, y = A, B)
12 copsexg 4608 . . . . . . . 8 (A, B = x, y → (φxy(A, B = x, y φ)))
1312eqcoms 2356 . . . . . . 7 (x, y = A, B → (φxy(A, B = x, y φ)))
1411, 13syl 15 . . . . . 6 ((x = A y = B) → (φxy(A, B = x, y φ)))
15 copsex2g.1 . . . . . 6 ((x = A y = B) → (φψ))
1614, 15bitr3d 246 . . . . 5 ((x = A y = B) → (xy(A, B = x, y φ) ↔ ψ))
1710, 16exlimi 1803 . . . 4 (y(x = A y = B) → (xy(A, B = x, y φ) ↔ ψ))
186, 17exlimi 1803 . . 3 (xy(x = A y = B) → (xy(A, B = x, y φ) ↔ ψ))
193, 18sylbir 204 . 2 ((x x = A y y = B) → (xy(A, B = x, y φ) ↔ ψ))
201, 2, 19syl2an 463 1 ((A V B W) → (xy(A, B = x, y φ) ↔ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  cop 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569
This theorem is referenced by:  opelopabga  4701  ov6g  5601
  Copyright terms: Public domain W3C validator