New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqtr | GIF version |
Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
Ref | Expression |
---|---|
eqtr | ⊢ ((A = B ∧ B = C) → A = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . 2 ⊢ (A = B → (A = C ↔ B = C)) | |
2 | 1 | biimpar 471 | 1 ⊢ ((A = B ∧ B = C) → A = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: eqtr2 2371 eqtr3 2372 sylan9eq 2405 eqvinc 2967 uneqdifeq 3639 ider 5944 eqer 5962 ncaddccl 6145 ncdisjeq 6149 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |