New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ider | GIF version |
Description: The identity relationship is an equivalence relationship over the universe. (Contributed by SF, 22-Feb-2015.) |
Ref | Expression |
---|---|
ider | ⊢ I Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idex 5504 | . . . 4 ⊢ I ∈ V | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → I ∈ V) |
3 | vvex 4109 | . . . 4 ⊢ V ∈ V | |
4 | 3 | a1i 10 | . . 3 ⊢ ( ⊤ → V ∈ V) |
5 | equcomi 1679 | . . . . 5 ⊢ (x = y → y = x) | |
6 | vex 2862 | . . . . . 6 ⊢ y ∈ V | |
7 | 6 | ideq 4870 | . . . . 5 ⊢ (x I y ↔ x = y) |
8 | vex 2862 | . . . . . 6 ⊢ x ∈ V | |
9 | 8 | ideq 4870 | . . . . 5 ⊢ (y I x ↔ y = x) |
10 | 5, 7, 9 | 3imtr4i 257 | . . . 4 ⊢ (x I y → y I x) |
11 | 10 | 3ad2ant3 978 | . . 3 ⊢ (( ⊤ ∧ (x ∈ V ∧ y ∈ V) ∧ x I y) → y I x) |
12 | eqtr 2370 | . . . . 5 ⊢ ((x = y ∧ y = z) → x = z) | |
13 | vex 2862 | . . . . . . 7 ⊢ z ∈ V | |
14 | 13 | ideq 4870 | . . . . . 6 ⊢ (y I z ↔ y = z) |
15 | 7, 14 | anbi12i 678 | . . . . 5 ⊢ ((x I y ∧ y I z) ↔ (x = y ∧ y = z)) |
16 | 13 | ideq 4870 | . . . . 5 ⊢ (x I z ↔ x = z) |
17 | 12, 15, 16 | 3imtr4i 257 | . . . 4 ⊢ ((x I y ∧ y I z) → x I z) |
18 | 17 | 3ad2ant3 978 | . . 3 ⊢ (( ⊤ ∧ (x ∈ V ∧ y ∈ V ∧ z ∈ V) ∧ (x I y ∧ y I z)) → x I z) |
19 | 2, 4, 11, 18 | iserd 5942 | . 2 ⊢ ( ⊤ → I Er V) |
20 | 19 | trud 1323 | 1 ⊢ I Er V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∧ w3a 934 ⊤ wtru 1316 ∈ wcel 1710 Vcvv 2859 class class class wbr 4639 I cid 4763 Er cer 5898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-swap 4724 df-sset 4725 df-ima 4727 df-id 4767 df-cnv 4785 df-trans 5899 df-sym 5908 df-er 5909 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |