Step | Hyp | Ref
| Expression |
1 | | elncs 6120 |
. 2
⊢ (A ∈ NC ↔ ∃x A = Nc x) |
2 | | elncs 6120 |
. 2
⊢ (B ∈ NC ↔ ∃y B = Nc y) |
3 | | eeanv 1913 |
. . 3
⊢ (∃x∃y(A = Nc x ∧ B = Nc y) ↔ (∃x A = Nc x ∧ ∃y B = Nc y)) |
4 | | vex 2863 |
. . . . . . . . 9
⊢ x ∈
V |
5 | | 0ex 4111 |
. . . . . . . . . 10
⊢ ∅ ∈
V |
6 | 5 | complex 4105 |
. . . . . . . . 9
⊢ ∼ ∅ ∈
V |
7 | 4, 6 | xpsnen 6050 |
. . . . . . . 8
⊢ (x × { ∼ ∅}) ≈ x |
8 | | snex 4112 |
. . . . . . . . . 10
⊢ { ∼ ∅} ∈
V |
9 | 4, 8 | xpex 5116 |
. . . . . . . . 9
⊢ (x × { ∼ ∅}) ∈
V |
10 | 9 | eqnc 6128 |
. . . . . . . 8
⊢ ( Nc (x × {
∼ ∅}) = Nc
x ↔ (x × { ∼ ∅}) ≈ x) |
11 | 7, 10 | mpbir 200 |
. . . . . . 7
⊢ Nc (x × {
∼ ∅}) = Nc
x |
12 | 11 | eqcomi 2357 |
. . . . . 6
⊢ Nc x = Nc (x × {
∼ ∅}) |
13 | | eqtr 2370 |
. . . . . 6
⊢ ((A = Nc x ∧ Nc x = Nc (x × {
∼ ∅})) → A = Nc (x × { ∼ ∅})) |
14 | 12, 13 | mpan2 652 |
. . . . 5
⊢ (A = Nc x → A =
Nc (x ×
{ ∼ ∅})) |
15 | | vex 2863 |
. . . . . . . . 9
⊢ y ∈
V |
16 | 15, 5 | xpsnen 6050 |
. . . . . . . 8
⊢ (y × {∅})
≈ y |
17 | | snex 4112 |
. . . . . . . . . 10
⊢ {∅} ∈
V |
18 | 15, 17 | xpex 5116 |
. . . . . . . . 9
⊢ (y × {∅})
∈ V |
19 | 18 | eqnc 6128 |
. . . . . . . 8
⊢ ( Nc (y × {∅}) = Nc y ↔ (y
× {∅}) ≈ y) |
20 | 16, 19 | mpbir 200 |
. . . . . . 7
⊢ Nc (y × {∅}) = Nc y |
21 | 20 | eqcomi 2357 |
. . . . . 6
⊢ Nc y = Nc (y × {∅}) |
22 | | eqtr 2370 |
. . . . . 6
⊢ ((B = Nc y ∧ Nc y = Nc (y × {∅})) → B
= Nc (y
× {∅})) |
23 | 21, 22 | mpan2 652 |
. . . . 5
⊢ (B = Nc y → B =
Nc (y ×
{∅})) |
24 | | addceq12 4386 |
. . . . . 6
⊢ ((A = Nc (x × { ∼ ∅}) ∧ B = Nc (y × {∅}))
→ (A +c B) = ( Nc (x × { ∼ ∅}) +c Nc (y × {∅}))) |
25 | | necompl 3545 |
. . . . . . . . . . 11
⊢ ∼ ∅ ≠ ∅ |
26 | 6, 25 | xpnedisj 5514 |
. . . . . . . . . 10
⊢ ((x × { ∼ ∅}) ∩ (y
× {∅})) = ∅ |
27 | 9, 18 | ncdisjun 6137 |
. . . . . . . . . 10
⊢ (((x × { ∼ ∅}) ∩ (y
× {∅})) = ∅ → Nc
((x × { ∼ ∅}) ∪ (y
× {∅})) = ( Nc (x × {
∼ ∅}) +c Nc (y × {∅}))) |
28 | 26, 27 | ax-mp 5 |
. . . . . . . . 9
⊢ Nc ((x × {
∼ ∅}) ∪ (y × {∅})) =
( Nc (x
× { ∼ ∅}) +c
Nc (y ×
{∅})) |
29 | 28 | eqcomi 2357 |
. . . . . . . 8
⊢ ( Nc (x × {
∼ ∅}) +c Nc (y × {∅})) = Nc ((x × { ∼ ∅}) ∪ (y
× {∅})) |
30 | 9, 18 | unex 4107 |
. . . . . . . . 9
⊢ ((x × { ∼ ∅}) ∪ (y
× {∅})) ∈ V |
31 | | nceq 6109 |
. . . . . . . . . 10
⊢ (z = ((x ×
{ ∼ ∅}) ∪ (y × {∅}))
→ Nc z =
Nc ((x ×
{ ∼ ∅}) ∪ (y × {∅}))) |
32 | 31 | eqeq2d 2364 |
. . . . . . . . 9
⊢ (z = ((x ×
{ ∼ ∅}) ∪ (y × {∅}))
→ (( Nc (x × { ∼ ∅}) +c Nc (y × {∅})) = Nc z ↔ ( Nc (x × { ∼ ∅}) +c Nc (y × {∅})) = Nc ((x × { ∼ ∅}) ∪ (y
× {∅})))) |
33 | 30, 32 | spcev 2947 |
. . . . . . . 8
⊢ (( Nc (x × {
∼ ∅}) +c Nc (y × {∅})) = Nc ((x × { ∼ ∅}) ∪ (y
× {∅})) → ∃z( Nc (x × {
∼ ∅}) +c Nc (y × {∅})) = Nc z) |
34 | 29, 33 | ax-mp 5 |
. . . . . . 7
⊢ ∃z( Nc (x × {
∼ ∅}) +c Nc (y × {∅})) = Nc z |
35 | | elncs 6120 |
. . . . . . 7
⊢ (( Nc (x × {
∼ ∅}) +c Nc (y × {∅})) ∈ NC ↔ ∃z( Nc (x × { ∼ ∅}) +c Nc (y × {∅})) = Nc z) |
36 | 34, 35 | mpbir 200 |
. . . . . 6
⊢ ( Nc (x × {
∼ ∅}) +c Nc (y × {∅})) ∈ NC |
37 | 24, 36 | syl6eqel 2441 |
. . . . 5
⊢ ((A = Nc (x × { ∼ ∅}) ∧ B = Nc (y × {∅}))
→ (A +c B) ∈ NC ) |
38 | 14, 23, 37 | syl2an 463 |
. . . 4
⊢ ((A = Nc x ∧ B = Nc y) → (A
+c B) ∈ NC
) |
39 | 38 | exlimivv 1635 |
. . 3
⊢ (∃x∃y(A = Nc x ∧ B = Nc y) → (A
+c B) ∈ NC
) |
40 | 3, 39 | sylbir 204 |
. 2
⊢ ((∃x A = Nc x ∧ ∃y B = Nc y) → (A
+c B) ∈ NC
) |
41 | 1, 2, 40 | syl2anb 465 |
1
⊢ ((A ∈ NC ∧ B ∈ NC ) → (A
+c B) ∈ NC
) |