New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexlimdvv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
rexlimdvv.1 | ⊢ (φ → ((x ∈ A ∧ y ∈ B) → (ψ → χ))) |
Ref | Expression |
---|---|
rexlimdvv | ⊢ (φ → (∃x ∈ A ∃y ∈ B ψ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvv.1 | . . . 4 ⊢ (φ → ((x ∈ A ∧ y ∈ B) → (ψ → χ))) | |
2 | 1 | expdimp 426 | . . 3 ⊢ ((φ ∧ x ∈ A) → (y ∈ B → (ψ → χ))) |
3 | 2 | rexlimdv 2737 | . 2 ⊢ ((φ ∧ x ∈ A) → (∃y ∈ B ψ → χ)) |
4 | 3 | rexlimdva 2738 | 1 ⊢ (φ → (∃x ∈ A ∃y ∈ B ψ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∃wrex 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2619 df-rex 2620 |
This theorem is referenced by: rexlimdvva 2745 ncfinraise 4481 ncfinlower 4483 nnpw1ex 4484 nnpweq 4523 sfinltfin 4535 f1oiso2 5500 addcdi 6250 |
Copyright terms: Public domain | W3C validator |