New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fsn2 | GIF version |
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by set.mm contributors, 19-May-2004.) |
Ref | Expression |
---|---|
fsn2.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
fsn2 | ⊢ (F:{A}–→B ↔ ((F ‘A) ∈ B ∧ F = {〈A, (F ‘A)〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsn2.1 | . . . . . 6 ⊢ A ∈ V | |
2 | 1 | snid 3761 | . . . . 5 ⊢ A ∈ {A} |
3 | ffvelrn 5416 | . . . . 5 ⊢ ((F:{A}–→B ∧ A ∈ {A}) → (F ‘A) ∈ B) | |
4 | 2, 3 | mpan2 652 | . . . 4 ⊢ (F:{A}–→B → (F ‘A) ∈ B) |
5 | ffn 5224 | . . . . 5 ⊢ (F:{A}–→B → F Fn {A}) | |
6 | dffn3 5230 | . . . . . . 7 ⊢ (F Fn {A} ↔ F:{A}–→ran F) | |
7 | 6 | biimpi 186 | . . . . . 6 ⊢ (F Fn {A} → F:{A}–→ran F) |
8 | imadmrn 5009 | . . . . . . . . 9 ⊢ (F “ dom F) = ran F | |
9 | fndm 5183 | . . . . . . . . . 10 ⊢ (F Fn {A} → dom F = {A}) | |
10 | 9 | imaeq2d 4943 | . . . . . . . . 9 ⊢ (F Fn {A} → (F “ dom F) = (F “ {A})) |
11 | 8, 10 | syl5eqr 2399 | . . . . . . . 8 ⊢ (F Fn {A} → ran F = (F “ {A})) |
12 | fnsnfv 5374 | . . . . . . . . 9 ⊢ ((F Fn {A} ∧ A ∈ {A}) → {(F ‘A)} = (F “ {A})) | |
13 | 2, 12 | mpan2 652 | . . . . . . . 8 ⊢ (F Fn {A} → {(F ‘A)} = (F “ {A})) |
14 | 11, 13 | eqtr4d 2388 | . . . . . . 7 ⊢ (F Fn {A} → ran F = {(F ‘A)}) |
15 | feq3 5213 | . . . . . . 7 ⊢ (ran F = {(F ‘A)} → (F:{A}–→ran F ↔ F:{A}–→{(F ‘A)})) | |
16 | 14, 15 | syl 15 | . . . . . 6 ⊢ (F Fn {A} → (F:{A}–→ran F ↔ F:{A}–→{(F ‘A)})) |
17 | 7, 16 | mpbid 201 | . . . . 5 ⊢ (F Fn {A} → F:{A}–→{(F ‘A)}) |
18 | 5, 17 | syl 15 | . . . 4 ⊢ (F:{A}–→B → F:{A}–→{(F ‘A)}) |
19 | 4, 18 | jca 518 | . . 3 ⊢ (F:{A}–→B → ((F ‘A) ∈ B ∧ F:{A}–→{(F ‘A)})) |
20 | snssi 3853 | . . . 4 ⊢ ((F ‘A) ∈ B → {(F ‘A)} ⊆ B) | |
21 | fss 5231 | . . . . 5 ⊢ ((F:{A}–→{(F ‘A)} ∧ {(F ‘A)} ⊆ B) → F:{A}–→B) | |
22 | 21 | ancoms 439 | . . . 4 ⊢ (({(F ‘A)} ⊆ B ∧ F:{A}–→{(F ‘A)}) → F:{A}–→B) |
23 | 20, 22 | sylan 457 | . . 3 ⊢ (((F ‘A) ∈ B ∧ F:{A}–→{(F ‘A)}) → F:{A}–→B) |
24 | 19, 23 | impbii 180 | . 2 ⊢ (F:{A}–→B ↔ ((F ‘A) ∈ B ∧ F:{A}–→{(F ‘A)})) |
25 | fvex 5340 | . . . 4 ⊢ (F ‘A) ∈ V | |
26 | 1, 25 | fsn 5433 | . . 3 ⊢ (F:{A}–→{(F ‘A)} ↔ F = {〈A, (F ‘A)〉}) |
27 | 26 | anbi2i 675 | . 2 ⊢ (((F ‘A) ∈ B ∧ F:{A}–→{(F ‘A)}) ↔ ((F ‘A) ∈ B ∧ F = {〈A, (F ‘A)〉})) |
28 | 24, 27 | bitri 240 | 1 ⊢ (F:{A}–→B ↔ ((F ‘A) ∈ B ∧ F = {〈A, (F ‘A)〉})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ⊆ wss 3258 {csn 3738 〈cop 4562 “ cima 4723 dom cdm 4773 ran crn 4774 Fn wfn 4777 –→wf 4778 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 |
This theorem is referenced by: fnressn 5439 fressnfv 5440 1cnc 6140 |
Copyright terms: Public domain | W3C validator |