NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fveq1i GIF version

Theorem fveq1i 5330
Description: Equality inference for function value. (Contributed by set.mm contributors, 2-Sep-2003.)
Hypothesis
Ref Expression
fveq1i.1 F = G
Assertion
Ref Expression
fveq1i (FA) = (GA)

Proof of Theorem fveq1i
StepHypRef Expression
1 fveq1i.1 . 2 F = G
2 fveq1 5328 . 2 (F = G → (FA) = (GA))
31, 2ax-mp 5 1 (FA) = (GA)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-uni 3893  df-iota 4340  df-br 4641  df-fv 4796
This theorem is referenced by:  fvun2  5381  fvopab3ig  5388  fvsnun1  5448  fvsnun2  5449  fvpr1  5450  fvpr2  5451  f1ocnvfv2  5478  ov  5596  ovigg  5597  ovg  5602  fvfullfun  5865
  Copyright terms: Public domain W3C validator