New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  fveq1i GIF version

Theorem fveq1i 5329
 Description: Equality inference for function value. (Contributed by set.mm contributors, 2-Sep-2003.)
Hypothesis
Ref Expression
fveq1i.1 F = G
Assertion
Ref Expression
fveq1i (FA) = (GA)

Proof of Theorem fveq1i
StepHypRef Expression
1 fveq1i.1 . 2 F = G
2 fveq1 5327 . 2 (F = G → (FA) = (GA))
31, 2ax-mp 5 1 (FA) = (GA)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642   ‘cfv 4781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rex 2620  df-uni 3892  df-iota 4339  df-br 4640  df-fv 4795 This theorem is referenced by:  fvun2  5380  fvopab3ig  5387  fvsnun1  5447  fvsnun2  5448  fvpr1  5449  fvpr2  5450  f1ocnvfv2  5477  ov  5595  ovigg  5596  ovg  5601  fvfullfun  5864
 Copyright terms: Public domain W3C validator