New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fvsnun2 | GIF version |
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5448. (Contributed by set.mm contributors, 23-Sep-2007.) |
Ref | Expression |
---|---|
fvsnun.1 | ⊢ A ∈ V |
fvsnun.2 | ⊢ B ∈ V |
fvsnun.3 | ⊢ G = ({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) |
Ref | Expression |
---|---|
fvsnun2 | ⊢ (D ∈ (C ∖ {A}) → (G ‘D) = (F ‘D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 5343 | . 2 ⊢ (D ∈ (C ∖ {A}) → ((G ↾ (C ∖ {A})) ‘D) = (G ‘D)) | |
2 | fvsnun.3 | . . . . . 6 ⊢ G = ({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) | |
3 | 2 | reseq1i 4931 | . . . . 5 ⊢ (G ↾ (C ∖ {A})) = (({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) ↾ (C ∖ {A})) |
4 | resundir 4983 | . . . . 5 ⊢ (({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) ↾ (C ∖ {A})) = (({〈A, B〉} ↾ (C ∖ {A})) ∪ ((F ↾ (C ∖ {A})) ↾ (C ∖ {A}))) | |
5 | disjdif 3623 | . . . . . . . 8 ⊢ ({A} ∩ (C ∖ {A})) = ∅ | |
6 | fvsnun.1 | . . . . . . . . . 10 ⊢ A ∈ V | |
7 | fvsnun.2 | . . . . . . . . . 10 ⊢ B ∈ V | |
8 | 6, 7 | fnsn 5153 | . . . . . . . . 9 ⊢ {〈A, B〉} Fn {A} |
9 | fnresdisj 5194 | . . . . . . . . 9 ⊢ ({〈A, B〉} Fn {A} → (({A} ∩ (C ∖ {A})) = ∅ ↔ ({〈A, B〉} ↾ (C ∖ {A})) = ∅)) | |
10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ (({A} ∩ (C ∖ {A})) = ∅ ↔ ({〈A, B〉} ↾ (C ∖ {A})) = ∅) |
11 | 5, 10 | mpbi 199 | . . . . . . 7 ⊢ ({〈A, B〉} ↾ (C ∖ {A})) = ∅ |
12 | residm 4995 | . . . . . . 7 ⊢ ((F ↾ (C ∖ {A})) ↾ (C ∖ {A})) = (F ↾ (C ∖ {A})) | |
13 | 11, 12 | uneq12i 3417 | . . . . . 6 ⊢ (({〈A, B〉} ↾ (C ∖ {A})) ∪ ((F ↾ (C ∖ {A})) ↾ (C ∖ {A}))) = (∅ ∪ (F ↾ (C ∖ {A}))) |
14 | uncom 3409 | . . . . . 6 ⊢ (∅ ∪ (F ↾ (C ∖ {A}))) = ((F ↾ (C ∖ {A})) ∪ ∅) | |
15 | un0 3576 | . . . . . 6 ⊢ ((F ↾ (C ∖ {A})) ∪ ∅) = (F ↾ (C ∖ {A})) | |
16 | 13, 14, 15 | 3eqtri 2377 | . . . . 5 ⊢ (({〈A, B〉} ↾ (C ∖ {A})) ∪ ((F ↾ (C ∖ {A})) ↾ (C ∖ {A}))) = (F ↾ (C ∖ {A})) |
17 | 3, 4, 16 | 3eqtri 2377 | . . . 4 ⊢ (G ↾ (C ∖ {A})) = (F ↾ (C ∖ {A})) |
18 | 17 | fveq1i 5330 | . . 3 ⊢ ((G ↾ (C ∖ {A})) ‘D) = ((F ↾ (C ∖ {A})) ‘D) |
19 | fvres 5343 | . . 3 ⊢ (D ∈ (C ∖ {A}) → ((F ↾ (C ∖ {A})) ‘D) = (F ‘D)) | |
20 | 18, 19 | syl5eq 2397 | . 2 ⊢ (D ∈ (C ∖ {A}) → ((G ↾ (C ∖ {A})) ‘D) = (F ‘D)) |
21 | 1, 20 | eqtr3d 2387 | 1 ⊢ (D ∈ (C ∖ {A}) → (G ‘D) = (F ‘D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 ∅c0 3551 {csn 3738 〈cop 4562 ↾ cres 4775 Fn wfn 4777 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-fv 4796 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |