![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > fvsnun1 | GIF version |
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5448. (Contributed by set.mm contributors, 23-Sep-2007.) |
Ref | Expression |
---|---|
fvsnun.1 | ⊢ A ∈ V |
fvsnun.2 | ⊢ B ∈ V |
fvsnun.3 | ⊢ G = ({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) |
Ref | Expression |
---|---|
fvsnun1 | ⊢ (G ‘A) = B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsnun.1 | . . . 4 ⊢ A ∈ V | |
2 | 1 | snid 3760 | . . 3 ⊢ A ∈ {A} |
3 | fvres 5342 | . . 3 ⊢ (A ∈ {A} → ((G ↾ {A}) ‘A) = (G ‘A)) | |
4 | 2, 3 | ax-mp 8 | . 2 ⊢ ((G ↾ {A}) ‘A) = (G ‘A) |
5 | fvsnun.3 | . . . . . 6 ⊢ G = ({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) | |
6 | 5 | reseq1i 4930 | . . . . 5 ⊢ (G ↾ {A}) = (({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) ↾ {A}) |
7 | resundir 4982 | . . . . 5 ⊢ (({〈A, B〉} ∪ (F ↾ (C ∖ {A}))) ↾ {A}) = (({〈A, B〉} ↾ {A}) ∪ ((F ↾ (C ∖ {A})) ↾ {A})) | |
8 | incom 3448 | . . . . . . . . 9 ⊢ ((C ∖ {A}) ∩ {A}) = ({A} ∩ (C ∖ {A})) | |
9 | disjdif 3622 | . . . . . . . . 9 ⊢ ({A} ∩ (C ∖ {A})) = ∅ | |
10 | 8, 9 | eqtri 2373 | . . . . . . . 8 ⊢ ((C ∖ {A}) ∩ {A}) = ∅ |
11 | resdisj 5050 | . . . . . . . 8 ⊢ (((C ∖ {A}) ∩ {A}) = ∅ → ((F ↾ (C ∖ {A})) ↾ {A}) = ∅) | |
12 | 10, 11 | ax-mp 8 | . . . . . . 7 ⊢ ((F ↾ (C ∖ {A})) ↾ {A}) = ∅ |
13 | 12 | uneq2i 3415 | . . . . . 6 ⊢ (({〈A, B〉} ↾ {A}) ∪ ((F ↾ (C ∖ {A})) ↾ {A})) = (({〈A, B〉} ↾ {A}) ∪ ∅) |
14 | un0 3575 | . . . . . 6 ⊢ (({〈A, B〉} ↾ {A}) ∪ ∅) = ({〈A, B〉} ↾ {A}) | |
15 | 13, 14 | eqtri 2373 | . . . . 5 ⊢ (({〈A, B〉} ↾ {A}) ∪ ((F ↾ (C ∖ {A})) ↾ {A})) = ({〈A, B〉} ↾ {A}) |
16 | 6, 7, 15 | 3eqtri 2377 | . . . 4 ⊢ (G ↾ {A}) = ({〈A, B〉} ↾ {A}) |
17 | 16 | fveq1i 5329 | . . 3 ⊢ ((G ↾ {A}) ‘A) = (({〈A, B〉} ↾ {A}) ‘A) |
18 | fvres 5342 | . . . 4 ⊢ (A ∈ {A} → (({〈A, B〉} ↾ {A}) ‘A) = ({〈A, B〉} ‘A)) | |
19 | 2, 18 | ax-mp 8 | . . 3 ⊢ (({〈A, B〉} ↾ {A}) ‘A) = ({〈A, B〉} ‘A) |
20 | fvsnun.2 | . . . 4 ⊢ B ∈ V | |
21 | 1, 20 | fvsn 5445 | . . 3 ⊢ ({〈A, B〉} ‘A) = B |
22 | 17, 19, 21 | 3eqtri 2377 | . 2 ⊢ ((G ↾ {A}) ‘A) = B |
23 | 4, 22 | eqtr3i 2375 | 1 ⊢ (G ‘A) = B |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 Vcvv 2859 ∖ cdif 3206 ∪ cun 3207 ∩ cin 3208 ∅c0 3550 {csn 3737 〈cop 4561 ↾ cres 4774 ‘cfv 4781 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fv 4795 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |