| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > iinin2 | GIF version | ||
| Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4021 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| iinin2 | ⊢ (A ≠ ∅ → ∩x ∈ A (B ∩ C) = (B ∩ ∩x ∈ A C)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.28zv 3646 | . . . 4 ⊢ (A ≠ ∅ → (∀x ∈ A (y ∈ B ∧ y ∈ C) ↔ (y ∈ B ∧ ∀x ∈ A y ∈ C))) | |
| 2 | elin 3220 | . . . . 5 ⊢ (y ∈ (B ∩ C) ↔ (y ∈ B ∧ y ∈ C)) | |
| 3 | 2 | ralbii 2639 | . . . 4 ⊢ (∀x ∈ A y ∈ (B ∩ C) ↔ ∀x ∈ A (y ∈ B ∧ y ∈ C)) | 
| 4 | vex 2863 | . . . . . 6 ⊢ y ∈ V | |
| 5 | eliin 3975 | . . . . . 6 ⊢ (y ∈ V → (y ∈ ∩x ∈ A C ↔ ∀x ∈ A y ∈ C)) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (y ∈ ∩x ∈ A C ↔ ∀x ∈ A y ∈ C) | 
| 7 | 6 | anbi2i 675 | . . . 4 ⊢ ((y ∈ B ∧ y ∈ ∩x ∈ A C) ↔ (y ∈ B ∧ ∀x ∈ A y ∈ C)) | 
| 8 | 1, 3, 7 | 3bitr4g 279 | . . 3 ⊢ (A ≠ ∅ → (∀x ∈ A y ∈ (B ∩ C) ↔ (y ∈ B ∧ y ∈ ∩x ∈ A C))) | 
| 9 | eliin 3975 | . . . 4 ⊢ (y ∈ V → (y ∈ ∩x ∈ A (B ∩ C) ↔ ∀x ∈ A y ∈ (B ∩ C))) | |
| 10 | 4, 9 | ax-mp 5 | . . 3 ⊢ (y ∈ ∩x ∈ A (B ∩ C) ↔ ∀x ∈ A y ∈ (B ∩ C)) | 
| 11 | elin 3220 | . . 3 ⊢ (y ∈ (B ∩ ∩x ∈ A C) ↔ (y ∈ B ∧ y ∈ ∩x ∈ A C)) | |
| 12 | 8, 10, 11 | 3bitr4g 279 | . 2 ⊢ (A ≠ ∅ → (y ∈ ∩x ∈ A (B ∩ C) ↔ y ∈ (B ∩ ∩x ∈ A C))) | 
| 13 | 12 | eqrdv 2351 | 1 ⊢ (A ≠ ∅ → ∩x ∈ A (B ∩ C) = (B ∩ ∩x ∈ A C)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∀wral 2615 Vcvv 2860 ∩ cin 3209 ∅c0 3551 ∩ciin 3971 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 df-iin 3973 | 
| This theorem is referenced by: iinin1 4038 | 
| Copyright terms: Public domain | W3C validator |