| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > iinpw | GIF version | ||
| Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) | 
| Ref | Expression | 
|---|---|
| iinpw | ⊢ ℘∩A = ∩x ∈ A ℘x | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssint 3943 | . . . 4 ⊢ (y ⊆ ∩A ↔ ∀x ∈ A y ⊆ x) | |
| 2 | vex 2863 | . . . . . 6 ⊢ y ∈ V | |
| 3 | 2 | elpw 3729 | . . . . 5 ⊢ (y ∈ ℘x ↔ y ⊆ x) | 
| 4 | 3 | ralbii 2639 | . . . 4 ⊢ (∀x ∈ A y ∈ ℘x ↔ ∀x ∈ A y ⊆ x) | 
| 5 | 1, 4 | bitr4i 243 | . . 3 ⊢ (y ⊆ ∩A ↔ ∀x ∈ A y ∈ ℘x) | 
| 6 | 2 | elpw 3729 | . . 3 ⊢ (y ∈ ℘∩A ↔ y ⊆ ∩A) | 
| 7 | eliin 3975 | . . . 4 ⊢ (y ∈ V → (y ∈ ∩x ∈ A ℘x ↔ ∀x ∈ A y ∈ ℘x)) | |
| 8 | 2, 7 | ax-mp 5 | . . 3 ⊢ (y ∈ ∩x ∈ A ℘x ↔ ∀x ∈ A y ∈ ℘x) | 
| 9 | 5, 6, 8 | 3bitr4i 268 | . 2 ⊢ (y ∈ ℘∩A ↔ y ∈ ∩x ∈ A ℘x) | 
| 10 | 9 | eqriv 2350 | 1 ⊢ ℘∩A = ∩x ∈ A ℘x | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∀wral 2615 Vcvv 2860 ⊆ wss 3258 ℘cpw 3723 ∩cint 3927 ∩ciin 3971 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pw 3725 df-int 3928 df-iin 3973 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |