NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iinpw GIF version

Theorem iinpw 4055
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
iinpw A = x A x
Distinct variable group:   x,A

Proof of Theorem iinpw
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 ssint 3943 . . . 4 (y Ax A y x)
2 vex 2863 . . . . . 6 y V
32elpw 3729 . . . . 5 (y xy x)
43ralbii 2639 . . . 4 (x A y xx A y x)
51, 4bitr4i 243 . . 3 (y Ax A y x)
62elpw 3729 . . 3 (y Ay A)
7 eliin 3975 . . . 4 (y V → (y x A xx A y x))
82, 7ax-mp 5 . . 3 (y x A xx A y x)
95, 6, 83bitr4i 268 . 2 (y Ay x A x)
109eqriv 2350 1 A = x A x
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wcel 1710  wral 2615  Vcvv 2860   wss 3258  cpw 3723  cint 3927  ciin 3971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-pw 3725  df-int 3928  df-iin 3973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator