| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > iunpwss | GIF version | ||
| Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) | 
| Ref | Expression | 
|---|---|
| iunpwss | ⊢ ∪x ∈ A ℘x ⊆ ℘∪A | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssiun 4009 | . . 3 ⊢ (∃x ∈ A y ⊆ x → y ⊆ ∪x ∈ A x) | |
| 2 | eliun 3974 | . . . 4 ⊢ (y ∈ ∪x ∈ A ℘x ↔ ∃x ∈ A y ∈ ℘x) | |
| 3 | vex 2863 | . . . . . 6 ⊢ y ∈ V | |
| 4 | 3 | elpw 3729 | . . . . 5 ⊢ (y ∈ ℘x ↔ y ⊆ x) | 
| 5 | 4 | rexbii 2640 | . . . 4 ⊢ (∃x ∈ A y ∈ ℘x ↔ ∃x ∈ A y ⊆ x) | 
| 6 | 2, 5 | bitri 240 | . . 3 ⊢ (y ∈ ∪x ∈ A ℘x ↔ ∃x ∈ A y ⊆ x) | 
| 7 | 3 | elpw 3729 | . . . 4 ⊢ (y ∈ ℘∪A ↔ y ⊆ ∪A) | 
| 8 | uniiun 4020 | . . . . 5 ⊢ ∪A = ∪x ∈ A x | |
| 9 | 8 | sseq2i 3297 | . . . 4 ⊢ (y ⊆ ∪A ↔ y ⊆ ∪x ∈ A x) | 
| 10 | 7, 9 | bitri 240 | . . 3 ⊢ (y ∈ ℘∪A ↔ y ⊆ ∪x ∈ A x) | 
| 11 | 1, 6, 10 | 3imtr4i 257 | . 2 ⊢ (y ∈ ∪x ∈ A ℘x → y ∈ ℘∪A) | 
| 12 | 11 | ssriv 3278 | 1 ⊢ ∪x ∈ A ℘x ⊆ ℘∪A | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 1710 ∃wrex 2616 ⊆ wss 3258 ℘cpw 3723 ∪cuni 3892 ∪ciun 3970 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pw 3725 df-uni 3893 df-iun 3972 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |