New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > indir | GIF version |
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
indir | ⊢ ((A ∪ B) ∩ C) = ((A ∩ C) ∪ (B ∩ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indi 3502 | . 2 ⊢ (C ∩ (A ∪ B)) = ((C ∩ A) ∪ (C ∩ B)) | |
2 | incom 3449 | . 2 ⊢ ((A ∪ B) ∩ C) = (C ∩ (A ∪ B)) | |
3 | incom 3449 | . . 3 ⊢ (A ∩ C) = (C ∩ A) | |
4 | incom 3449 | . . 3 ⊢ (B ∩ C) = (C ∩ B) | |
5 | 3, 4 | uneq12i 3417 | . 2 ⊢ ((A ∩ C) ∪ (B ∩ C)) = ((C ∩ A) ∪ (C ∩ B)) |
6 | 1, 2, 5 | 3eqtr4i 2383 | 1 ⊢ ((A ∪ B) ∩ C) = ((A ∩ C) ∪ (B ∩ C)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∪ cun 3208 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 |
This theorem is referenced by: difundir 3509 undisj1 3603 addcass 4416 nnsucelrlem3 4427 resundir 4983 |
Copyright terms: Public domain | W3C validator |