| Step | Hyp | Ref
 | Expression | 
| 1 |   | ancom 437 | 
. . . . . . . . . . 11
⊢ (((a ∩ c) =
∅ ∧
(b ∩ c) = ∅) ↔
((b ∩ c) = ∅ ∧ (a ∩
c) = ∅)) | 
| 2 | 1 | anbi2i 675 | 
. . . . . . . . . 10
⊢ (((a ∩ b) =
∅ ∧
((a ∩ c) = ∅ ∧ (b ∩
c) = ∅))
↔ ((a ∩ b) = ∅ ∧ ((b ∩
c) = ∅
∧ (a ∩
c) = ∅))) | 
| 3 |   | an12 772 | 
. . . . . . . . . 10
⊢ (((a ∩ b) =
∅ ∧
((b ∩ c) = ∅ ∧ (a ∩
c) = ∅))
↔ ((b ∩ c) = ∅ ∧ ((a ∩
b) = ∅
∧ (a ∩
c) = ∅))) | 
| 4 | 2, 3 | bitri 240 | 
. . . . . . . . 9
⊢ (((a ∩ b) =
∅ ∧
((a ∩ c) = ∅ ∧ (b ∩
c) = ∅))
↔ ((b ∩ c) = ∅ ∧ ((a ∩
b) = ∅
∧ (a ∩
c) = ∅))) | 
| 5 |   | indir 3504 | 
. . . . . . . . . . . 12
⊢ ((a ∪ b) ∩
c) = ((a ∩ c) ∪
(b ∩ c)) | 
| 6 | 5 | eqeq1i 2360 | 
. . . . . . . . . . 11
⊢ (((a ∪ b) ∩
c) = ∅
↔ ((a ∩ c) ∪ (b
∩ c)) = ∅) | 
| 7 |   | un00 3587 | 
. . . . . . . . . . 11
⊢ (((a ∩ c) =
∅ ∧
(b ∩ c) = ∅) ↔
((a ∩ c) ∪ (b
∩ c)) = ∅) | 
| 8 | 6, 7 | bitr4i 243 | 
. . . . . . . . . 10
⊢ (((a ∪ b) ∩
c) = ∅
↔ ((a ∩ c) = ∅ ∧ (b ∩
c) = ∅)) | 
| 9 | 8 | anbi2i 675 | 
. . . . . . . . 9
⊢ (((a ∩ b) =
∅ ∧
((a ∪ b) ∩ c) =
∅) ↔ ((a ∩ b) =
∅ ∧
((a ∩ c) = ∅ ∧ (b ∩
c) = ∅))) | 
| 10 |   | indi 3502 | 
. . . . . . . . . . . 12
⊢ (a ∩ (b ∪
c)) = ((a ∩ b) ∪
(a ∩ c)) | 
| 11 | 10 | eqeq1i 2360 | 
. . . . . . . . . . 11
⊢ ((a ∩ (b ∪
c)) = ∅
↔ ((a ∩ b) ∪ (a
∩ c)) = ∅) | 
| 12 |   | un00 3587 | 
. . . . . . . . . . 11
⊢ (((a ∩ b) =
∅ ∧
(a ∩ c) = ∅) ↔
((a ∩ b) ∪ (a
∩ c)) = ∅) | 
| 13 | 11, 12 | bitr4i 243 | 
. . . . . . . . . 10
⊢ ((a ∩ (b ∪
c)) = ∅
↔ ((a ∩ b) = ∅ ∧ (a ∩
c) = ∅)) | 
| 14 | 13 | anbi2i 675 | 
. . . . . . . . 9
⊢ (((b ∩ c) =
∅ ∧
(a ∩ (b ∪ c)) =
∅) ↔ ((b ∩ c) =
∅ ∧
((a ∩ b) = ∅ ∧ (a ∩
c) = ∅))) | 
| 15 | 4, 9, 14 | 3bitr4i 268 | 
. . . . . . . 8
⊢ (((a ∩ b) =
∅ ∧
((a ∪ b) ∩ c) =
∅) ↔ ((b ∩ c) =
∅ ∧
(a ∩ (b ∪ c)) =
∅)) | 
| 16 |   | unass 3421 | 
. . . . . . . . 9
⊢ ((a ∪ b) ∪
c) = (a
∪ (b ∪ c)) | 
| 17 | 16 | eqeq2i 2363 | 
. . . . . . . 8
⊢ (x = ((a ∪
b) ∪ c) ↔ x =
(a ∪ (b ∪ c))) | 
| 18 | 15, 17 | anbi12i 678 | 
. . . . . . 7
⊢ ((((a ∩ b) =
∅ ∧
((a ∪ b) ∩ c) =
∅) ∧
x = ((a
∪ b) ∪ c)) ↔ (((b
∩ c) = ∅ ∧ (a ∩ (b ∪
c)) = ∅)
∧ x =
(a ∪ (b ∪ c)))) | 
| 19 |   | anass 630 | 
. . . . . . 7
⊢ ((((a ∩ b) =
∅ ∧
((a ∪ b) ∩ c) =
∅) ∧
x = ((a
∪ b) ∪ c)) ↔ ((a
∩ b) = ∅ ∧ (((a ∪ b) ∩
c) = ∅
∧ x =
((a ∪ b) ∪ c)))) | 
| 20 |   | anass 630 | 
. . . . . . 7
⊢ ((((b ∩ c) =
∅ ∧
(a ∩ (b ∪ c)) =
∅) ∧
x = (a
∪ (b ∪ c))) ↔ ((b
∩ c) = ∅ ∧ ((a ∩ (b ∪
c)) = ∅
∧ x =
(a ∪ (b ∪ c))))) | 
| 21 | 18, 19, 20 | 3bitr3i 266 | 
. . . . . 6
⊢ (((a ∩ b) =
∅ ∧
(((a ∪ b) ∩ c) =
∅ ∧
x = ((a
∪ b) ∪ c))) ↔ ((b
∩ c) = ∅ ∧ ((a ∩ (b ∪
c)) = ∅
∧ x =
(a ∪ (b ∪ c))))) | 
| 22 |   | anass 630 | 
. . . . . . . . 9
⊢ ((((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ((a
∩ b) = ∅ ∧ (d = (a ∪
b) ∧
((d ∩ c) = ∅ ∧ x = (d ∪ c))))) | 
| 23 |   | an12 772 | 
. . . . . . . . 9
⊢ (((a ∩ b) =
∅ ∧
(d = (a
∪ b) ∧
((d ∩ c) = ∅ ∧ x = (d ∪ c))))
↔ (d = (a ∪ b) ∧ ((a ∩
b) = ∅
∧ ((d
∩ c) = ∅ ∧ x = (d ∪
c))))) | 
| 24 | 22, 23 | bitri 240 | 
. . . . . . . 8
⊢ ((((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ (d =
(a ∪ b) ∧ ((a ∩ b) =
∅ ∧
((d ∩ c) = ∅ ∧ x = (d ∪ c))))) | 
| 25 | 24 | exbii 1582 | 
. . . . . . 7
⊢ (∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d(d = (a ∪
b) ∧
((a ∩ b) = ∅ ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))))) | 
| 26 |   | vex 2863 | 
. . . . . . . . 9
⊢ a ∈
V | 
| 27 |   | vex 2863 | 
. . . . . . . . 9
⊢ b ∈
V | 
| 28 | 26, 27 | unex 4107 | 
. . . . . . . 8
⊢ (a ∪ b) ∈ V | 
| 29 |   | ineq1 3451 | 
. . . . . . . . . . 11
⊢ (d = (a ∪
b) → (d ∩ c) =
((a ∪ b) ∩ c)) | 
| 30 | 29 | eqeq1d 2361 | 
. . . . . . . . . 10
⊢ (d = (a ∪
b) → ((d ∩ c) =
∅ ↔ ((a ∪ b) ∩
c) = ∅)) | 
| 31 |   | uneq1 3412 | 
. . . . . . . . . . 11
⊢ (d = (a ∪
b) → (d ∪ c) =
((a ∪ b) ∪ c)) | 
| 32 | 31 | eqeq2d 2364 | 
. . . . . . . . . 10
⊢ (d = (a ∪
b) → (x = (d ∪
c) ↔ x = ((a ∪
b) ∪ c))) | 
| 33 | 30, 32 | anbi12d 691 | 
. . . . . . . . 9
⊢ (d = (a ∪
b) → (((d ∩ c) =
∅ ∧
x = (d
∪ c)) ↔ (((a ∪ b) ∩
c) = ∅
∧ x =
((a ∪ b) ∪ c)))) | 
| 34 | 33 | anbi2d 684 | 
. . . . . . . 8
⊢ (d = (a ∪
b) → (((a ∩ b) =
∅ ∧
((d ∩ c) = ∅ ∧ x = (d ∪ c)))
↔ ((a ∩ b) = ∅ ∧ (((a ∪
b) ∩ c) = ∅ ∧ x = ((a ∪ b) ∪
c))))) | 
| 35 | 28, 34 | ceqsexv 2895 | 
. . . . . . 7
⊢ (∃d(d = (a ∪
b) ∧
((a ∩ b) = ∅ ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) ↔ ((a
∩ b) = ∅ ∧ (((a ∪ b) ∩
c) = ∅
∧ x =
((a ∪ b) ∪ c)))) | 
| 36 | 25, 35 | bitri 240 | 
. . . . . 6
⊢ (∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ((a
∩ b) = ∅ ∧ (((a ∪ b) ∩
c) = ∅
∧ x =
((a ∪ b) ∪ c)))) | 
| 37 |   | anass 630 | 
. . . . . . . . 9
⊢ ((((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ((b
∩ c) = ∅ ∧ (e = (b ∪
c) ∧
((a ∩ e) = ∅ ∧ x = (a ∪ e))))) | 
| 38 |   | an12 772 | 
. . . . . . . . 9
⊢ (((b ∩ c) =
∅ ∧
(e = (b
∪ c) ∧
((a ∩ e) = ∅ ∧ x = (a ∪ e))))
↔ (e = (b ∪ c) ∧ ((b ∩
c) = ∅
∧ ((a
∩ e) = ∅ ∧ x = (a ∪
e))))) | 
| 39 | 37, 38 | bitri 240 | 
. . . . . . . 8
⊢ ((((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ (e =
(b ∪ c) ∧ ((b ∩ c) =
∅ ∧
((a ∩ e) = ∅ ∧ x = (a ∪ e))))) | 
| 40 | 39 | exbii 1582 | 
. . . . . . 7
⊢ (∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ∃e(e = (b ∪
c) ∧
((b ∩ c) = ∅ ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))))) | 
| 41 |   | vex 2863 | 
. . . . . . . . 9
⊢ c ∈
V | 
| 42 | 27, 41 | unex 4107 | 
. . . . . . . 8
⊢ (b ∪ c) ∈ V | 
| 43 |   | ineq2 3452 | 
. . . . . . . . . . 11
⊢ (e = (b ∪
c) → (a ∩ e) =
(a ∩ (b ∪ c))) | 
| 44 | 43 | eqeq1d 2361 | 
. . . . . . . . . 10
⊢ (e = (b ∪
c) → ((a ∩ e) =
∅ ↔ (a ∩ (b ∪
c)) = ∅)) | 
| 45 |   | uneq2 3413 | 
. . . . . . . . . . 11
⊢ (e = (b ∪
c) → (a ∪ e) =
(a ∪ (b ∪ c))) | 
| 46 | 45 | eqeq2d 2364 | 
. . . . . . . . . 10
⊢ (e = (b ∪
c) → (x = (a ∪
e) ↔ x = (a ∪
(b ∪ c)))) | 
| 47 | 44, 46 | anbi12d 691 | 
. . . . . . . . 9
⊢ (e = (b ∪
c) → (((a ∩ e) =
∅ ∧
x = (a
∪ e)) ↔ ((a ∩ (b ∪
c)) = ∅
∧ x =
(a ∪ (b ∪ c))))) | 
| 48 | 47 | anbi2d 684 | 
. . . . . . . 8
⊢ (e = (b ∪
c) → (((b ∩ c) =
∅ ∧
((a ∩ e) = ∅ ∧ x = (a ∪ e)))
↔ ((b ∩ c) = ∅ ∧ ((a ∩
(b ∪ c)) = ∅ ∧ x = (a ∪ (b ∪
c)))))) | 
| 49 | 42, 48 | ceqsexv 2895 | 
. . . . . . 7
⊢ (∃e(e = (b ∪
c) ∧
((b ∩ c) = ∅ ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) ↔ ((b
∩ c) = ∅ ∧ ((a ∩ (b ∪
c)) = ∅
∧ x =
(a ∪ (b ∪ c))))) | 
| 50 | 40, 49 | bitri 240 | 
. . . . . 6
⊢ (∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ((b
∩ c) = ∅ ∧ ((a ∩ (b ∪
c)) = ∅
∧ x =
(a ∪ (b ∪ c))))) | 
| 51 | 21, 36, 50 | 3bitr4i 268 | 
. . . . 5
⊢ (∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 52 | 51 | rexbii 2640 | 
. . . 4
⊢ (∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 53 | 52 | 2rexbii 2642 | 
. . 3
⊢ (∃a ∈ A ∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 54 |   | eladdc 4399 | 
. . . 4
⊢ (x ∈ ((A +c B) +c C) ↔ ∃d ∈ (A
+c B)∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c))) | 
| 55 |   | df-rex 2621 | 
. . . . 5
⊢ (∃d ∈ (A
+c B)∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c)) ↔ ∃d(d ∈ (A +c B) ∧ ∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c)))) | 
| 56 |   | rexcom4 2879 | 
. . . . . 6
⊢ (∃a ∈ A ∃d∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d∃a ∈ A ∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 57 |   | rexcom4 2879 | 
. . . . . . . . . 10
⊢ (∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d∃c ∈ C (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 58 |   | r19.42v 2766 | 
. . . . . . . . . . 11
⊢ (∃c ∈ C (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ (((a
∩ b) = ∅ ∧ d = (a ∪
b)) ∧
∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c)))) | 
| 59 | 58 | exbii 1582 | 
. . . . . . . . . 10
⊢ (∃d∃c ∈ C (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 60 | 57, 59 | bitri 240 | 
. . . . . . . . 9
⊢ (∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 61 | 60 | rexbii 2640 | 
. . . . . . . 8
⊢ (∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃b ∈ B ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 62 |   | rexcom4 2879 | 
. . . . . . . 8
⊢ (∃b ∈ B ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 63 | 61, 62 | bitri 240 | 
. . . . . . 7
⊢ (∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 64 | 63 | rexbii 2640 | 
. . . . . 6
⊢ (∃a ∈ A ∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃a ∈ A ∃d∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 65 |   | r19.41v 2765 | 
. . . . . . . 8
⊢ (∃a ∈ A (∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ (∃a ∈ A ∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 66 |   | r19.41v 2765 | 
. . . . . . . . 9
⊢ (∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ (∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 67 | 66 | rexbii 2640 | 
. . . . . . . 8
⊢ (∃a ∈ A ∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃a ∈ A (∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 68 |   | eladdc 4399 | 
. . . . . . . . 9
⊢ (d ∈ (A +c B) ↔ ∃a ∈ A ∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b))) | 
| 69 | 68 | anbi1i 676 | 
. . . . . . . 8
⊢ ((d ∈ (A +c B) ∧ ∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c))) ↔ (∃a ∈ A ∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 70 | 65, 67, 69 | 3bitr4ri 269 | 
. . . . . . 7
⊢ ((d ∈ (A +c B) ∧ ∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c))) ↔ ∃a ∈ A ∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 71 | 70 | exbii 1582 | 
. . . . . 6
⊢ (∃d(d ∈ (A +c B) ∧ ∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c))) ↔ ∃d∃a ∈ A ∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 72 | 56, 64, 71 | 3bitr4ri 269 | 
. . . . 5
⊢ (∃d(d ∈ (A +c B) ∧ ∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c))) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 73 | 55, 72 | bitri 240 | 
. . . 4
⊢ (∃d ∈ (A
+c B)∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c)) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 74 | 54, 73 | bitri 240 | 
. . 3
⊢ (x ∈ ((A +c B) +c C) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) | 
| 75 |   | eladdc 4399 | 
. . . 4
⊢ (x ∈ (A +c (B +c C)) ↔ ∃a ∈ A ∃e ∈ (B
+c C)((a ∩ e) =
∅ ∧
x = (a
∪ e))) | 
| 76 |   | df-rex 2621 | 
. . . . . 6
⊢ (∃e ∈ (B
+c C)((a ∩ e) =
∅ ∧
x = (a
∪ e)) ↔ ∃e(e ∈ (B +c C) ∧ ((a ∩ e) =
∅ ∧
x = (a
∪ e)))) | 
| 77 |   | rexcom4 2879 | 
. . . . . . 7
⊢ (∃b ∈ B ∃e∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ∃e∃b ∈ B ∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 78 |   | rexcom4 2879 | 
. . . . . . . 8
⊢ (∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ∃e∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 79 | 78 | rexbii 2640 | 
. . . . . . 7
⊢ (∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ∃b ∈ B ∃e∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 80 |   | r19.41v 2765 | 
. . . . . . . . 9
⊢ (∃b ∈ B (∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ (∃b ∈ B ∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 81 |   | r19.41v 2765 | 
. . . . . . . . . 10
⊢ (∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ (∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 82 | 81 | rexbii 2640 | 
. . . . . . . . 9
⊢ (∃b ∈ B ∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ∃b ∈ B (∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 83 |   | eladdc 4399 | 
. . . . . . . . . 10
⊢ (e ∈ (B +c C) ↔ ∃b ∈ B ∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c))) | 
| 84 | 83 | anbi1i 676 | 
. . . . . . . . 9
⊢ ((e ∈ (B +c C) ∧ ((a ∩ e) =
∅ ∧
x = (a
∪ e))) ↔ (∃b ∈ B ∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 85 | 80, 82, 84 | 3bitr4ri 269 | 
. . . . . . . 8
⊢ ((e ∈ (B +c C) ∧ ((a ∩ e) =
∅ ∧
x = (a
∪ e))) ↔ ∃b ∈ B ∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 86 | 85 | exbii 1582 | 
. . . . . . 7
⊢ (∃e(e ∈ (B +c C) ∧ ((a ∩ e) =
∅ ∧
x = (a
∪ e))) ↔ ∃e∃b ∈ B ∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 87 | 77, 79, 86 | 3bitr4ri 269 | 
. . . . . 6
⊢ (∃e(e ∈ (B +c C) ∧ ((a ∩ e) =
∅ ∧
x = (a
∪ e))) ↔ ∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 88 | 76, 87 | bitri 240 | 
. . . . 5
⊢ (∃e ∈ (B
+c C)((a ∩ e) =
∅ ∧
x = (a
∪ e)) ↔ ∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 89 | 88 | rexbii 2640 | 
. . . 4
⊢ (∃a ∈ A ∃e ∈ (B
+c C)((a ∩ e) =
∅ ∧
x = (a
∪ e)) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 90 | 75, 89 | bitri 240 | 
. . 3
⊢ (x ∈ (A +c (B +c C)) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) | 
| 91 | 53, 74, 90 | 3bitr4i 268 | 
. 2
⊢ (x ∈ ((A +c B) +c C) ↔ x
∈ (A
+c (B
+c C))) | 
| 92 | 91 | eqriv 2350 | 
1
⊢ ((A +c B) +c C) = (A
+c (B
+c C)) |