NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  addcass GIF version

Theorem addcass 4416
Description: Cardinal addition is associative. Theorem X.1.11, corollary 1 of [Rosser] p. 277. (Contributed by SF, 17-Jan-2015.)
Assertion
Ref Expression
addcass ((A +c B) +c C) = (A +c (B +c C))

Proof of Theorem addcass
Dummy variables a b c d e x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ancom 437 . . . . . . . . . . 11 (((ac) = (bc) = ) ↔ ((bc) = (ac) = ))
21anbi2i 675 . . . . . . . . . 10 (((ab) = ((ac) = (bc) = )) ↔ ((ab) = ((bc) = (ac) = )))
3 an12 772 . . . . . . . . . 10 (((ab) = ((bc) = (ac) = )) ↔ ((bc) = ((ab) = (ac) = )))
42, 3bitri 240 . . . . . . . . 9 (((ab) = ((ac) = (bc) = )) ↔ ((bc) = ((ab) = (ac) = )))
5 indir 3504 . . . . . . . . . . . 12 ((ab) ∩ c) = ((ac) ∪ (bc))
65eqeq1i 2360 . . . . . . . . . . 11 (((ab) ∩ c) = ↔ ((ac) ∪ (bc)) = )
7 un00 3587 . . . . . . . . . . 11 (((ac) = (bc) = ) ↔ ((ac) ∪ (bc)) = )
86, 7bitr4i 243 . . . . . . . . . 10 (((ab) ∩ c) = ↔ ((ac) = (bc) = ))
98anbi2i 675 . . . . . . . . 9 (((ab) = ((ab) ∩ c) = ) ↔ ((ab) = ((ac) = (bc) = )))
10 indi 3502 . . . . . . . . . . . 12 (a ∩ (bc)) = ((ab) ∪ (ac))
1110eqeq1i 2360 . . . . . . . . . . 11 ((a ∩ (bc)) = ↔ ((ab) ∪ (ac)) = )
12 un00 3587 . . . . . . . . . . 11 (((ab) = (ac) = ) ↔ ((ab) ∪ (ac)) = )
1311, 12bitr4i 243 . . . . . . . . . 10 ((a ∩ (bc)) = ↔ ((ab) = (ac) = ))
1413anbi2i 675 . . . . . . . . 9 (((bc) = (a ∩ (bc)) = ) ↔ ((bc) = ((ab) = (ac) = )))
154, 9, 143bitr4i 268 . . . . . . . 8 (((ab) = ((ab) ∩ c) = ) ↔ ((bc) = (a ∩ (bc)) = ))
16 unass 3421 . . . . . . . . 9 ((ab) ∪ c) = (a ∪ (bc))
1716eqeq2i 2363 . . . . . . . 8 (x = ((ab) ∪ c) ↔ x = (a ∪ (bc)))
1815, 17anbi12i 678 . . . . . . 7 ((((ab) = ((ab) ∩ c) = ) x = ((ab) ∪ c)) ↔ (((bc) = (a ∩ (bc)) = ) x = (a ∪ (bc))))
19 anass 630 . . . . . . 7 ((((ab) = ((ab) ∩ c) = ) x = ((ab) ∪ c)) ↔ ((ab) = (((ab) ∩ c) = x = ((ab) ∪ c))))
20 anass 630 . . . . . . 7 ((((bc) = (a ∩ (bc)) = ) x = (a ∪ (bc))) ↔ ((bc) = ((a ∩ (bc)) = x = (a ∪ (bc)))))
2118, 19, 203bitr3i 266 . . . . . 6 (((ab) = (((ab) ∩ c) = x = ((ab) ∪ c))) ↔ ((bc) = ((a ∩ (bc)) = x = (a ∪ (bc)))))
22 anass 630 . . . . . . . . 9 ((((ab) = d = (ab)) ((dc) = x = (dc))) ↔ ((ab) = (d = (ab) ((dc) = x = (dc)))))
23 an12 772 . . . . . . . . 9 (((ab) = (d = (ab) ((dc) = x = (dc)))) ↔ (d = (ab) ((ab) = ((dc) = x = (dc)))))
2422, 23bitri 240 . . . . . . . 8 ((((ab) = d = (ab)) ((dc) = x = (dc))) ↔ (d = (ab) ((ab) = ((dc) = x = (dc)))))
2524exbii 1582 . . . . . . 7 (d(((ab) = d = (ab)) ((dc) = x = (dc))) ↔ d(d = (ab) ((ab) = ((dc) = x = (dc)))))
26 vex 2863 . . . . . . . . 9 a V
27 vex 2863 . . . . . . . . 9 b V
2826, 27unex 4107 . . . . . . . 8 (ab) V
29 ineq1 3451 . . . . . . . . . . 11 (d = (ab) → (dc) = ((ab) ∩ c))
3029eqeq1d 2361 . . . . . . . . . 10 (d = (ab) → ((dc) = ↔ ((ab) ∩ c) = ))
31 uneq1 3412 . . . . . . . . . . 11 (d = (ab) → (dc) = ((ab) ∪ c))
3231eqeq2d 2364 . . . . . . . . . 10 (d = (ab) → (x = (dc) ↔ x = ((ab) ∪ c)))
3330, 32anbi12d 691 . . . . . . . . 9 (d = (ab) → (((dc) = x = (dc)) ↔ (((ab) ∩ c) = x = ((ab) ∪ c))))
3433anbi2d 684 . . . . . . . 8 (d = (ab) → (((ab) = ((dc) = x = (dc))) ↔ ((ab) = (((ab) ∩ c) = x = ((ab) ∪ c)))))
3528, 34ceqsexv 2895 . . . . . . 7 (d(d = (ab) ((ab) = ((dc) = x = (dc)))) ↔ ((ab) = (((ab) ∩ c) = x = ((ab) ∪ c))))
3625, 35bitri 240 . . . . . 6 (d(((ab) = d = (ab)) ((dc) = x = (dc))) ↔ ((ab) = (((ab) ∩ c) = x = ((ab) ∪ c))))
37 anass 630 . . . . . . . . 9 ((((bc) = e = (bc)) ((ae) = x = (ae))) ↔ ((bc) = (e = (bc) ((ae) = x = (ae)))))
38 an12 772 . . . . . . . . 9 (((bc) = (e = (bc) ((ae) = x = (ae)))) ↔ (e = (bc) ((bc) = ((ae) = x = (ae)))))
3937, 38bitri 240 . . . . . . . 8 ((((bc) = e = (bc)) ((ae) = x = (ae))) ↔ (e = (bc) ((bc) = ((ae) = x = (ae)))))
4039exbii 1582 . . . . . . 7 (e(((bc) = e = (bc)) ((ae) = x = (ae))) ↔ e(e = (bc) ((bc) = ((ae) = x = (ae)))))
41 vex 2863 . . . . . . . . 9 c V
4227, 41unex 4107 . . . . . . . 8 (bc) V
43 ineq2 3452 . . . . . . . . . . 11 (e = (bc) → (ae) = (a ∩ (bc)))
4443eqeq1d 2361 . . . . . . . . . 10 (e = (bc) → ((ae) = ↔ (a ∩ (bc)) = ))
45 uneq2 3413 . . . . . . . . . . 11 (e = (bc) → (ae) = (a ∪ (bc)))
4645eqeq2d 2364 . . . . . . . . . 10 (e = (bc) → (x = (ae) ↔ x = (a ∪ (bc))))
4744, 46anbi12d 691 . . . . . . . . 9 (e = (bc) → (((ae) = x = (ae)) ↔ ((a ∩ (bc)) = x = (a ∪ (bc)))))
4847anbi2d 684 . . . . . . . 8 (e = (bc) → (((bc) = ((ae) = x = (ae))) ↔ ((bc) = ((a ∩ (bc)) = x = (a ∪ (bc))))))
4942, 48ceqsexv 2895 . . . . . . 7 (e(e = (bc) ((bc) = ((ae) = x = (ae)))) ↔ ((bc) = ((a ∩ (bc)) = x = (a ∪ (bc)))))
5040, 49bitri 240 . . . . . 6 (e(((bc) = e = (bc)) ((ae) = x = (ae))) ↔ ((bc) = ((a ∩ (bc)) = x = (a ∪ (bc)))))
5121, 36, 503bitr4i 268 . . . . 5 (d(((ab) = d = (ab)) ((dc) = x = (dc))) ↔ e(((bc) = e = (bc)) ((ae) = x = (ae))))
5251rexbii 2640 . . . 4 (c C d(((ab) = d = (ab)) ((dc) = x = (dc))) ↔ c C e(((bc) = e = (bc)) ((ae) = x = (ae))))
53522rexbii 2642 . . 3 (a A b B c C d(((ab) = d = (ab)) ((dc) = x = (dc))) ↔ a A b B c C e(((bc) = e = (bc)) ((ae) = x = (ae))))
54 eladdc 4399 . . . 4 (x ((A +c B) +c C) ↔ d (A +c B)c C ((dc) = x = (dc)))
55 df-rex 2621 . . . . 5 (d (A +c B)c C ((dc) = x = (dc)) ↔ d(d (A +c B) c C ((dc) = x = (dc))))
56 rexcom4 2879 . . . . . 6 (a A db B (((ab) = d = (ab)) c C ((dc) = x = (dc))) ↔ da A b B (((ab) = d = (ab)) c C ((dc) = x = (dc))))
57 rexcom4 2879 . . . . . . . . . 10 (c C d(((ab) = d = (ab)) ((dc) = x = (dc))) ↔ dc C (((ab) = d = (ab)) ((dc) = x = (dc))))
58 r19.42v 2766 . . . . . . . . . . 11 (c C (((ab) = d = (ab)) ((dc) = x = (dc))) ↔ (((ab) = d = (ab)) c C ((dc) = x = (dc))))
5958exbii 1582 . . . . . . . . . 10 (dc C (((ab) = d = (ab)) ((dc) = x = (dc))) ↔ d(((ab) = d = (ab)) c C ((dc) = x = (dc))))
6057, 59bitri 240 . . . . . . . . 9 (c C d(((ab) = d = (ab)) ((dc) = x = (dc))) ↔ d(((ab) = d = (ab)) c C ((dc) = x = (dc))))
6160rexbii 2640 . . . . . . . 8 (b B c C d(((ab) = d = (ab)) ((dc) = x = (dc))) ↔ b B d(((ab) = d = (ab)) c C ((dc) = x = (dc))))
62 rexcom4 2879 . . . . . . . 8 (b B d(((ab) = d = (ab)) c C ((dc) = x = (dc))) ↔ db B (((ab) = d = (ab)) c C ((dc) = x = (dc))))
6361, 62bitri 240 . . . . . . 7 (b B c C d(((ab) = d = (ab)) ((dc) = x = (dc))) ↔ db B (((ab) = d = (ab)) c C ((dc) = x = (dc))))
6463rexbii 2640 . . . . . 6 (a A b B c C d(((ab) = d = (ab)) ((dc) = x = (dc))) ↔ a A db B (((ab) = d = (ab)) c C ((dc) = x = (dc))))
65 r19.41v 2765 . . . . . . . 8 (a A (b B ((ab) = d = (ab)) c C ((dc) = x = (dc))) ↔ (a A b B ((ab) = d = (ab)) c C ((dc) = x = (dc))))
66 r19.41v 2765 . . . . . . . . 9 (b B (((ab) = d = (ab)) c C ((dc) = x = (dc))) ↔ (b B ((ab) = d = (ab)) c C ((dc) = x = (dc))))
6766rexbii 2640 . . . . . . . 8 (a A b B (((ab) = d = (ab)) c C ((dc) = x = (dc))) ↔ a A (b B ((ab) = d = (ab)) c C ((dc) = x = (dc))))
68 eladdc 4399 . . . . . . . . 9 (d (A +c B) ↔ a A b B ((ab) = d = (ab)))
6968anbi1i 676 . . . . . . . 8 ((d (A +c B) c C ((dc) = x = (dc))) ↔ (a A b B ((ab) = d = (ab)) c C ((dc) = x = (dc))))
7065, 67, 693bitr4ri 269 . . . . . . 7 ((d (A +c B) c C ((dc) = x = (dc))) ↔ a A b B (((ab) = d = (ab)) c C ((dc) = x = (dc))))
7170exbii 1582 . . . . . 6 (d(d (A +c B) c C ((dc) = x = (dc))) ↔ da A b B (((ab) = d = (ab)) c C ((dc) = x = (dc))))
7256, 64, 713bitr4ri 269 . . . . 5 (d(d (A +c B) c C ((dc) = x = (dc))) ↔ a A b B c C d(((ab) = d = (ab)) ((dc) = x = (dc))))
7355, 72bitri 240 . . . 4 (d (A +c B)c C ((dc) = x = (dc)) ↔ a A b B c C d(((ab) = d = (ab)) ((dc) = x = (dc))))
7454, 73bitri 240 . . 3 (x ((A +c B) +c C) ↔ a A b B c C d(((ab) = d = (ab)) ((dc) = x = (dc))))
75 eladdc 4399 . . . 4 (x (A +c (B +c C)) ↔ a A e (B +c C)((ae) = x = (ae)))
76 df-rex 2621 . . . . . 6 (e (B +c C)((ae) = x = (ae)) ↔ e(e (B +c C) ((ae) = x = (ae))))
77 rexcom4 2879 . . . . . . 7 (b B ec C (((bc) = e = (bc)) ((ae) = x = (ae))) ↔ eb B c C (((bc) = e = (bc)) ((ae) = x = (ae))))
78 rexcom4 2879 . . . . . . . 8 (c C e(((bc) = e = (bc)) ((ae) = x = (ae))) ↔ ec C (((bc) = e = (bc)) ((ae) = x = (ae))))
7978rexbii 2640 . . . . . . 7 (b B c C e(((bc) = e = (bc)) ((ae) = x = (ae))) ↔ b B ec C (((bc) = e = (bc)) ((ae) = x = (ae))))
80 r19.41v 2765 . . . . . . . . 9 (b B (c C ((bc) = e = (bc)) ((ae) = x = (ae))) ↔ (b B c C ((bc) = e = (bc)) ((ae) = x = (ae))))
81 r19.41v 2765 . . . . . . . . . 10 (c C (((bc) = e = (bc)) ((ae) = x = (ae))) ↔ (c C ((bc) = e = (bc)) ((ae) = x = (ae))))
8281rexbii 2640 . . . . . . . . 9 (b B c C (((bc) = e = (bc)) ((ae) = x = (ae))) ↔ b B (c C ((bc) = e = (bc)) ((ae) = x = (ae))))
83 eladdc 4399 . . . . . . . . . 10 (e (B +c C) ↔ b B c C ((bc) = e = (bc)))
8483anbi1i 676 . . . . . . . . 9 ((e (B +c C) ((ae) = x = (ae))) ↔ (b B c C ((bc) = e = (bc)) ((ae) = x = (ae))))
8580, 82, 843bitr4ri 269 . . . . . . . 8 ((e (B +c C) ((ae) = x = (ae))) ↔ b B c C (((bc) = e = (bc)) ((ae) = x = (ae))))
8685exbii 1582 . . . . . . 7 (e(e (B +c C) ((ae) = x = (ae))) ↔ eb B c C (((bc) = e = (bc)) ((ae) = x = (ae))))
8777, 79, 863bitr4ri 269 . . . . . 6 (e(e (B +c C) ((ae) = x = (ae))) ↔ b B c C e(((bc) = e = (bc)) ((ae) = x = (ae))))
8876, 87bitri 240 . . . . 5 (e (B +c C)((ae) = x = (ae)) ↔ b B c C e(((bc) = e = (bc)) ((ae) = x = (ae))))
8988rexbii 2640 . . . 4 (a A e (B +c C)((ae) = x = (ae)) ↔ a A b B c C e(((bc) = e = (bc)) ((ae) = x = (ae))))
9075, 89bitri 240 . . 3 (x (A +c (B +c C)) ↔ a A b B c C e(((bc) = e = (bc)) ((ae) = x = (ae))))
9153, 74, 903bitr4i 268 . 2 (x ((A +c B) +c C) ↔ x (A +c (B +c C)))
9291eqriv 2350 1 ((A +c B) +c C) = (A +c (B +c C))
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  cun 3208  cin 3209  c0 3551   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-addc 4379
This theorem is referenced by:  addc32  4417  addc4  4418  addc6  4419  nncaddccl  4420  ltfinirr  4458  leltfintr  4459  ltfintr  4460  lefinlteq  4464  ltlefin  4469  sucoddeven  4512  evenodddisj  4517  sfinltfin  4536  lectr  6212  addceq0  6220  nclenn  6250  lecadd2  6267  ncslesuc  6268  nncdiv3  6278  nnc3n3p1  6279  nnc3n3p2  6280  nnc3p1n3p2  6281  nchoicelem1  6290  nchoicelem2  6291
  Copyright terms: Public domain W3C validator