Step | Hyp | Ref
| Expression |
1 | | ancom 437 |
. . . . . . . . . . 11
⊢ (((a ∩ c) =
∅ ∧
(b ∩ c) = ∅) ↔
((b ∩ c) = ∅ ∧ (a ∩
c) = ∅)) |
2 | 1 | anbi2i 675 |
. . . . . . . . . 10
⊢ (((a ∩ b) =
∅ ∧
((a ∩ c) = ∅ ∧ (b ∩
c) = ∅))
↔ ((a ∩ b) = ∅ ∧ ((b ∩
c) = ∅
∧ (a ∩
c) = ∅))) |
3 | | an12 772 |
. . . . . . . . . 10
⊢ (((a ∩ b) =
∅ ∧
((b ∩ c) = ∅ ∧ (a ∩
c) = ∅))
↔ ((b ∩ c) = ∅ ∧ ((a ∩
b) = ∅
∧ (a ∩
c) = ∅))) |
4 | 2, 3 | bitri 240 |
. . . . . . . . 9
⊢ (((a ∩ b) =
∅ ∧
((a ∩ c) = ∅ ∧ (b ∩
c) = ∅))
↔ ((b ∩ c) = ∅ ∧ ((a ∩
b) = ∅
∧ (a ∩
c) = ∅))) |
5 | | indir 3504 |
. . . . . . . . . . . 12
⊢ ((a ∪ b) ∩
c) = ((a ∩ c) ∪
(b ∩ c)) |
6 | 5 | eqeq1i 2360 |
. . . . . . . . . . 11
⊢ (((a ∪ b) ∩
c) = ∅
↔ ((a ∩ c) ∪ (b
∩ c)) = ∅) |
7 | | un00 3587 |
. . . . . . . . . . 11
⊢ (((a ∩ c) =
∅ ∧
(b ∩ c) = ∅) ↔
((a ∩ c) ∪ (b
∩ c)) = ∅) |
8 | 6, 7 | bitr4i 243 |
. . . . . . . . . 10
⊢ (((a ∪ b) ∩
c) = ∅
↔ ((a ∩ c) = ∅ ∧ (b ∩
c) = ∅)) |
9 | 8 | anbi2i 675 |
. . . . . . . . 9
⊢ (((a ∩ b) =
∅ ∧
((a ∪ b) ∩ c) =
∅) ↔ ((a ∩ b) =
∅ ∧
((a ∩ c) = ∅ ∧ (b ∩
c) = ∅))) |
10 | | indi 3502 |
. . . . . . . . . . . 12
⊢ (a ∩ (b ∪
c)) = ((a ∩ b) ∪
(a ∩ c)) |
11 | 10 | eqeq1i 2360 |
. . . . . . . . . . 11
⊢ ((a ∩ (b ∪
c)) = ∅
↔ ((a ∩ b) ∪ (a
∩ c)) = ∅) |
12 | | un00 3587 |
. . . . . . . . . . 11
⊢ (((a ∩ b) =
∅ ∧
(a ∩ c) = ∅) ↔
((a ∩ b) ∪ (a
∩ c)) = ∅) |
13 | 11, 12 | bitr4i 243 |
. . . . . . . . . 10
⊢ ((a ∩ (b ∪
c)) = ∅
↔ ((a ∩ b) = ∅ ∧ (a ∩
c) = ∅)) |
14 | 13 | anbi2i 675 |
. . . . . . . . 9
⊢ (((b ∩ c) =
∅ ∧
(a ∩ (b ∪ c)) =
∅) ↔ ((b ∩ c) =
∅ ∧
((a ∩ b) = ∅ ∧ (a ∩
c) = ∅))) |
15 | 4, 9, 14 | 3bitr4i 268 |
. . . . . . . 8
⊢ (((a ∩ b) =
∅ ∧
((a ∪ b) ∩ c) =
∅) ↔ ((b ∩ c) =
∅ ∧
(a ∩ (b ∪ c)) =
∅)) |
16 | | unass 3421 |
. . . . . . . . 9
⊢ ((a ∪ b) ∪
c) = (a
∪ (b ∪ c)) |
17 | 16 | eqeq2i 2363 |
. . . . . . . 8
⊢ (x = ((a ∪
b) ∪ c) ↔ x =
(a ∪ (b ∪ c))) |
18 | 15, 17 | anbi12i 678 |
. . . . . . 7
⊢ ((((a ∩ b) =
∅ ∧
((a ∪ b) ∩ c) =
∅) ∧
x = ((a
∪ b) ∪ c)) ↔ (((b
∩ c) = ∅ ∧ (a ∩ (b ∪
c)) = ∅)
∧ x =
(a ∪ (b ∪ c)))) |
19 | | anass 630 |
. . . . . . 7
⊢ ((((a ∩ b) =
∅ ∧
((a ∪ b) ∩ c) =
∅) ∧
x = ((a
∪ b) ∪ c)) ↔ ((a
∩ b) = ∅ ∧ (((a ∪ b) ∩
c) = ∅
∧ x =
((a ∪ b) ∪ c)))) |
20 | | anass 630 |
. . . . . . 7
⊢ ((((b ∩ c) =
∅ ∧
(a ∩ (b ∪ c)) =
∅) ∧
x = (a
∪ (b ∪ c))) ↔ ((b
∩ c) = ∅ ∧ ((a ∩ (b ∪
c)) = ∅
∧ x =
(a ∪ (b ∪ c))))) |
21 | 18, 19, 20 | 3bitr3i 266 |
. . . . . 6
⊢ (((a ∩ b) =
∅ ∧
(((a ∪ b) ∩ c) =
∅ ∧
x = ((a
∪ b) ∪ c))) ↔ ((b
∩ c) = ∅ ∧ ((a ∩ (b ∪
c)) = ∅
∧ x =
(a ∪ (b ∪ c))))) |
22 | | anass 630 |
. . . . . . . . 9
⊢ ((((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ((a
∩ b) = ∅ ∧ (d = (a ∪
b) ∧
((d ∩ c) = ∅ ∧ x = (d ∪ c))))) |
23 | | an12 772 |
. . . . . . . . 9
⊢ (((a ∩ b) =
∅ ∧
(d = (a
∪ b) ∧
((d ∩ c) = ∅ ∧ x = (d ∪ c))))
↔ (d = (a ∪ b) ∧ ((a ∩
b) = ∅
∧ ((d
∩ c) = ∅ ∧ x = (d ∪
c))))) |
24 | 22, 23 | bitri 240 |
. . . . . . . 8
⊢ ((((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ (d =
(a ∪ b) ∧ ((a ∩ b) =
∅ ∧
((d ∩ c) = ∅ ∧ x = (d ∪ c))))) |
25 | 24 | exbii 1582 |
. . . . . . 7
⊢ (∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d(d = (a ∪
b) ∧
((a ∩ b) = ∅ ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))))) |
26 | | vex 2863 |
. . . . . . . . 9
⊢ a ∈
V |
27 | | vex 2863 |
. . . . . . . . 9
⊢ b ∈
V |
28 | 26, 27 | unex 4107 |
. . . . . . . 8
⊢ (a ∪ b) ∈ V |
29 | | ineq1 3451 |
. . . . . . . . . . 11
⊢ (d = (a ∪
b) → (d ∩ c) =
((a ∪ b) ∩ c)) |
30 | 29 | eqeq1d 2361 |
. . . . . . . . . 10
⊢ (d = (a ∪
b) → ((d ∩ c) =
∅ ↔ ((a ∪ b) ∩
c) = ∅)) |
31 | | uneq1 3412 |
. . . . . . . . . . 11
⊢ (d = (a ∪
b) → (d ∪ c) =
((a ∪ b) ∪ c)) |
32 | 31 | eqeq2d 2364 |
. . . . . . . . . 10
⊢ (d = (a ∪
b) → (x = (d ∪
c) ↔ x = ((a ∪
b) ∪ c))) |
33 | 30, 32 | anbi12d 691 |
. . . . . . . . 9
⊢ (d = (a ∪
b) → (((d ∩ c) =
∅ ∧
x = (d
∪ c)) ↔ (((a ∪ b) ∩
c) = ∅
∧ x =
((a ∪ b) ∪ c)))) |
34 | 33 | anbi2d 684 |
. . . . . . . 8
⊢ (d = (a ∪
b) → (((a ∩ b) =
∅ ∧
((d ∩ c) = ∅ ∧ x = (d ∪ c)))
↔ ((a ∩ b) = ∅ ∧ (((a ∪
b) ∩ c) = ∅ ∧ x = ((a ∪ b) ∪
c))))) |
35 | 28, 34 | ceqsexv 2895 |
. . . . . . 7
⊢ (∃d(d = (a ∪
b) ∧
((a ∩ b) = ∅ ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) ↔ ((a
∩ b) = ∅ ∧ (((a ∪ b) ∩
c) = ∅
∧ x =
((a ∪ b) ∪ c)))) |
36 | 25, 35 | bitri 240 |
. . . . . 6
⊢ (∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ((a
∩ b) = ∅ ∧ (((a ∪ b) ∩
c) = ∅
∧ x =
((a ∪ b) ∪ c)))) |
37 | | anass 630 |
. . . . . . . . 9
⊢ ((((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ((b
∩ c) = ∅ ∧ (e = (b ∪
c) ∧
((a ∩ e) = ∅ ∧ x = (a ∪ e))))) |
38 | | an12 772 |
. . . . . . . . 9
⊢ (((b ∩ c) =
∅ ∧
(e = (b
∪ c) ∧
((a ∩ e) = ∅ ∧ x = (a ∪ e))))
↔ (e = (b ∪ c) ∧ ((b ∩
c) = ∅
∧ ((a
∩ e) = ∅ ∧ x = (a ∪
e))))) |
39 | 37, 38 | bitri 240 |
. . . . . . . 8
⊢ ((((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ (e =
(b ∪ c) ∧ ((b ∩ c) =
∅ ∧
((a ∩ e) = ∅ ∧ x = (a ∪ e))))) |
40 | 39 | exbii 1582 |
. . . . . . 7
⊢ (∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ∃e(e = (b ∪
c) ∧
((b ∩ c) = ∅ ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))))) |
41 | | vex 2863 |
. . . . . . . . 9
⊢ c ∈
V |
42 | 27, 41 | unex 4107 |
. . . . . . . 8
⊢ (b ∪ c) ∈ V |
43 | | ineq2 3452 |
. . . . . . . . . . 11
⊢ (e = (b ∪
c) → (a ∩ e) =
(a ∩ (b ∪ c))) |
44 | 43 | eqeq1d 2361 |
. . . . . . . . . 10
⊢ (e = (b ∪
c) → ((a ∩ e) =
∅ ↔ (a ∩ (b ∪
c)) = ∅)) |
45 | | uneq2 3413 |
. . . . . . . . . . 11
⊢ (e = (b ∪
c) → (a ∪ e) =
(a ∪ (b ∪ c))) |
46 | 45 | eqeq2d 2364 |
. . . . . . . . . 10
⊢ (e = (b ∪
c) → (x = (a ∪
e) ↔ x = (a ∪
(b ∪ c)))) |
47 | 44, 46 | anbi12d 691 |
. . . . . . . . 9
⊢ (e = (b ∪
c) → (((a ∩ e) =
∅ ∧
x = (a
∪ e)) ↔ ((a ∩ (b ∪
c)) = ∅
∧ x =
(a ∪ (b ∪ c))))) |
48 | 47 | anbi2d 684 |
. . . . . . . 8
⊢ (e = (b ∪
c) → (((b ∩ c) =
∅ ∧
((a ∩ e) = ∅ ∧ x = (a ∪ e)))
↔ ((b ∩ c) = ∅ ∧ ((a ∩
(b ∪ c)) = ∅ ∧ x = (a ∪ (b ∪
c)))))) |
49 | 42, 48 | ceqsexv 2895 |
. . . . . . 7
⊢ (∃e(e = (b ∪
c) ∧
((b ∩ c) = ∅ ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) ↔ ((b
∩ c) = ∅ ∧ ((a ∩ (b ∪
c)) = ∅
∧ x =
(a ∪ (b ∪ c))))) |
50 | 40, 49 | bitri 240 |
. . . . . 6
⊢ (∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ((b
∩ c) = ∅ ∧ ((a ∩ (b ∪
c)) = ∅
∧ x =
(a ∪ (b ∪ c))))) |
51 | 21, 36, 50 | 3bitr4i 268 |
. . . . 5
⊢ (∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
52 | 51 | rexbii 2640 |
. . . 4
⊢ (∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
53 | 52 | 2rexbii 2642 |
. . 3
⊢ (∃a ∈ A ∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
54 | | eladdc 4399 |
. . . 4
⊢ (x ∈ ((A +c B) +c C) ↔ ∃d ∈ (A
+c B)∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c))) |
55 | | df-rex 2621 |
. . . . 5
⊢ (∃d ∈ (A
+c B)∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c)) ↔ ∃d(d ∈ (A +c B) ∧ ∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c)))) |
56 | | rexcom4 2879 |
. . . . . 6
⊢ (∃a ∈ A ∃d∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d∃a ∈ A ∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
57 | | rexcom4 2879 |
. . . . . . . . . 10
⊢ (∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d∃c ∈ C (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
58 | | r19.42v 2766 |
. . . . . . . . . . 11
⊢ (∃c ∈ C (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ (((a
∩ b) = ∅ ∧ d = (a ∪
b)) ∧
∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c)))) |
59 | 58 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃d∃c ∈ C (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
60 | 57, 59 | bitri 240 |
. . . . . . . . 9
⊢ (∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
61 | 60 | rexbii 2640 |
. . . . . . . 8
⊢ (∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃b ∈ B ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
62 | | rexcom4 2879 |
. . . . . . . 8
⊢ (∃b ∈ B ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
63 | 61, 62 | bitri 240 |
. . . . . . 7
⊢ (∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃d∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
64 | 63 | rexbii 2640 |
. . . . . 6
⊢ (∃a ∈ A ∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃a ∈ A ∃d∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
65 | | r19.41v 2765 |
. . . . . . . 8
⊢ (∃a ∈ A (∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ (∃a ∈ A ∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
66 | | r19.41v 2765 |
. . . . . . . . 9
⊢ (∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ (∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
67 | 66 | rexbii 2640 |
. . . . . . . 8
⊢ (∃a ∈ A ∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c))) ↔ ∃a ∈ A (∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
68 | | eladdc 4399 |
. . . . . . . . 9
⊢ (d ∈ (A +c B) ↔ ∃a ∈ A ∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b))) |
69 | 68 | anbi1i 676 |
. . . . . . . 8
⊢ ((d ∈ (A +c B) ∧ ∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c))) ↔ (∃a ∈ A ∃b ∈ B ((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
70 | 65, 67, 69 | 3bitr4ri 269 |
. . . . . . 7
⊢ ((d ∈ (A +c B) ∧ ∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c))) ↔ ∃a ∈ A ∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
71 | 70 | exbii 1582 |
. . . . . 6
⊢ (∃d(d ∈ (A +c B) ∧ ∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c))) ↔ ∃d∃a ∈ A ∃b ∈ B (((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ∃c ∈ C ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
72 | 56, 64, 71 | 3bitr4ri 269 |
. . . . 5
⊢ (∃d(d ∈ (A +c B) ∧ ∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c))) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
73 | 55, 72 | bitri 240 |
. . . 4
⊢ (∃d ∈ (A
+c B)∃c ∈ C ((d ∩ c) =
∅ ∧
x = (d
∪ c)) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
74 | 54, 73 | bitri 240 |
. . 3
⊢ (x ∈ ((A +c B) +c C) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃d(((a ∩ b) =
∅ ∧
d = (a
∪ b)) ∧ ((d ∩
c) = ∅
∧ x =
(d ∪ c)))) |
75 | | eladdc 4399 |
. . . 4
⊢ (x ∈ (A +c (B +c C)) ↔ ∃a ∈ A ∃e ∈ (B
+c C)((a ∩ e) =
∅ ∧
x = (a
∪ e))) |
76 | | df-rex 2621 |
. . . . . 6
⊢ (∃e ∈ (B
+c C)((a ∩ e) =
∅ ∧
x = (a
∪ e)) ↔ ∃e(e ∈ (B +c C) ∧ ((a ∩ e) =
∅ ∧
x = (a
∪ e)))) |
77 | | rexcom4 2879 |
. . . . . . 7
⊢ (∃b ∈ B ∃e∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ∃e∃b ∈ B ∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
78 | | rexcom4 2879 |
. . . . . . . 8
⊢ (∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ∃e∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
79 | 78 | rexbii 2640 |
. . . . . . 7
⊢ (∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ∃b ∈ B ∃e∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
80 | | r19.41v 2765 |
. . . . . . . . 9
⊢ (∃b ∈ B (∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ (∃b ∈ B ∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
81 | | r19.41v 2765 |
. . . . . . . . . 10
⊢ (∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ (∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
82 | 81 | rexbii 2640 |
. . . . . . . . 9
⊢ (∃b ∈ B ∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e))) ↔ ∃b ∈ B (∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
83 | | eladdc 4399 |
. . . . . . . . . 10
⊢ (e ∈ (B +c C) ↔ ∃b ∈ B ∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c))) |
84 | 83 | anbi1i 676 |
. . . . . . . . 9
⊢ ((e ∈ (B +c C) ∧ ((a ∩ e) =
∅ ∧
x = (a
∪ e))) ↔ (∃b ∈ B ∃c ∈ C ((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
85 | 80, 82, 84 | 3bitr4ri 269 |
. . . . . . . 8
⊢ ((e ∈ (B +c C) ∧ ((a ∩ e) =
∅ ∧
x = (a
∪ e))) ↔ ∃b ∈ B ∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
86 | 85 | exbii 1582 |
. . . . . . 7
⊢ (∃e(e ∈ (B +c C) ∧ ((a ∩ e) =
∅ ∧
x = (a
∪ e))) ↔ ∃e∃b ∈ B ∃c ∈ C (((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
87 | 77, 79, 86 | 3bitr4ri 269 |
. . . . . 6
⊢ (∃e(e ∈ (B +c C) ∧ ((a ∩ e) =
∅ ∧
x = (a
∪ e))) ↔ ∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
88 | 76, 87 | bitri 240 |
. . . . 5
⊢ (∃e ∈ (B
+c C)((a ∩ e) =
∅ ∧
x = (a
∪ e)) ↔ ∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
89 | 88 | rexbii 2640 |
. . . 4
⊢ (∃a ∈ A ∃e ∈ (B
+c C)((a ∩ e) =
∅ ∧
x = (a
∪ e)) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
90 | 75, 89 | bitri 240 |
. . 3
⊢ (x ∈ (A +c (B +c C)) ↔ ∃a ∈ A ∃b ∈ B ∃c ∈ C ∃e(((b ∩ c) =
∅ ∧
e = (b
∪ c)) ∧ ((a ∩
e) = ∅
∧ x =
(a ∪ e)))) |
91 | 53, 74, 90 | 3bitr4i 268 |
. 2
⊢ (x ∈ ((A +c B) +c C) ↔ x
∈ (A
+c (B
+c C))) |
92 | 91 | eqriv 2350 |
1
⊢ ((A +c B) +c C) = (A
+c (B
+c C)) |