NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  undir GIF version

Theorem undir 3505
Description: Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
undir ((AB) ∪ C) = ((AC) ∩ (BC))

Proof of Theorem undir
StepHypRef Expression
1 undi 3503 . 2 (C ∪ (AB)) = ((CA) ∩ (CB))
2 uncom 3409 . 2 ((AB) ∪ C) = (C ∪ (AB))
3 uncom 3409 . . 3 (AC) = (CA)
4 uncom 3409 . . 3 (BC) = (CB)
53, 4ineq12i 3456 . 2 ((AC) ∩ (BC)) = ((CA) ∩ (CB))
61, 2, 53eqtr4i 2383 1 ((AB) ∪ C) = ((AC) ∩ (BC))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  cun 3208  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215
This theorem is referenced by:  undif1  3626  dfif4  3674  dfif5  3675  nnsucelrlem3  4427
  Copyright terms: Public domain W3C validator