NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  intss GIF version

Theorem intss 3948
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
intss (A BB A)

Proof of Theorem intss
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imim1 70 . . . . 5 ((y Ay B) → ((y Bx y) → (y Ax y)))
21al2imi 1561 . . . 4 (y(y Ay B) → (y(y Bx y) → y(y Ax y)))
3 vex 2863 . . . . 5 x V
43elint 3933 . . . 4 (x By(y Bx y))
53elint 3933 . . . 4 (x Ay(y Ax y))
62, 4, 53imtr4g 261 . . 3 (y(y Ay B) → (x Bx A))
76alrimiv 1631 . 2 (y(y Ay B) → x(x Bx A))
8 dfss2 3263 . 2 (A By(y Ay B))
9 dfss2 3263 . 2 (B Ax(x Bx A))
107, 8, 93imtr4i 257 1 (A BB A)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   wcel 1710   wss 3258  cint 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-int 3928
This theorem is referenced by:  uniintsn  3964
  Copyright terms: Public domain W3C validator