| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > intss | GIF version | ||
| Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| intss | ⊢ (A ⊆ B → ∩B ⊆ ∩A) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1 70 | . . . . 5 ⊢ ((y ∈ A → y ∈ B) → ((y ∈ B → x ∈ y) → (y ∈ A → x ∈ y))) | |
| 2 | 1 | al2imi 1561 | . . . 4 ⊢ (∀y(y ∈ A → y ∈ B) → (∀y(y ∈ B → x ∈ y) → ∀y(y ∈ A → x ∈ y))) |
| 3 | vex 2863 | . . . . 5 ⊢ x ∈ V | |
| 4 | 3 | elint 3933 | . . . 4 ⊢ (x ∈ ∩B ↔ ∀y(y ∈ B → x ∈ y)) |
| 5 | 3 | elint 3933 | . . . 4 ⊢ (x ∈ ∩A ↔ ∀y(y ∈ A → x ∈ y)) |
| 6 | 2, 4, 5 | 3imtr4g 261 | . . 3 ⊢ (∀y(y ∈ A → y ∈ B) → (x ∈ ∩B → x ∈ ∩A)) |
| 7 | 6 | alrimiv 1631 | . 2 ⊢ (∀y(y ∈ A → y ∈ B) → ∀x(x ∈ ∩B → x ∈ ∩A)) |
| 8 | dfss2 3263 | . 2 ⊢ (A ⊆ B ↔ ∀y(y ∈ A → y ∈ B)) | |
| 9 | dfss2 3263 | . 2 ⊢ (∩B ⊆ ∩A ↔ ∀x(x ∈ ∩B → x ∈ ∩A)) | |
| 10 | 7, 8, 9 | 3imtr4i 257 | 1 ⊢ (A ⊆ B → ∩B ⊆ ∩A) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 1710 ⊆ wss 3258 ∩cint 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-int 3928 |
| This theorem is referenced by: uniintsn 3964 |
| Copyright terms: Public domain | W3C validator |